Energy Budget Analysis for Signature Protocols on a Self-powered Wireless Sensor Node

  • Krishna Pabbuleti
  • Deepak Mane
  • Patrick Schaumont
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8651)


The Internet of Things will include many resource-constrained wireless sensing devices, hungry for energy, bandwidth and compute cycles. The sheer amount of devices involved will require new solutions to handle issues such as identification and power provisioning. In this contribution, we analyze the energy needs of several public-key based authentication protocols, taking into account the energy cost of communication as well as of computation. We have built an autonomous, energy-harvesting sensor node which includes a micro-controller, RF-unit, and energy harvester. We investigate the Elliptic Curve Digital Signature Algorithm (ECDSA), the Lamport-Diffie one-time hash-based signature scheme (LD-OTS) and the Winternitz one-time hash-based signature scheme (W-OTS). We demonstrate that there’s a trade-off between energy used for communication, energy used for computation, and security level. However, when we consider the energy needs for the overall system, we show that all schemes are within one order of magnitude from each another.


Wireless sensor node Public key cryptography Digital signatures Elliptic curves Hashing 


  1. 1.
    Anagear Power Management.
  2. 2.
    Texas Instruments Low Power 2.4 GHz RF Transceiver.
  3. 3.
    Texas Instruments MSP430F5438A Mixed Signal Microcontroller.
  4. 4.
    Texas Instruments MSP430x5xx and MSP430x6xx Family User’s Guide 2013.
  5. 5.
  6. 6.
    Ateniese, G., Bianchi, G., Capossele, A., Petrioli, C.: Low-cost standard signatures in wireless sensor networks: a case for reviving pre-computation techniques? In: NDSS (2013)Google Scholar
  7. 7.
    Batina, L., Das, A., Ege, B., Kavun, E.B., Mentens, N., Paar, C., Verbauwhede, I., Yalçin, T.: Dietary recommendations for lightweight block ciphers: power, energy and area analysis of recently developed architectures. In: Hutter, M., Schmidt, J.-M. (eds.) RFIDsec 2013. LNCS, vol. 8262, pp. 101–110. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Buchmann, J., Dahmen, E., Szydlo, M.: Hash-based digital signature schemes. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 35–93. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  9. 9.
    Buettner, M., Greenstein, B., Wetherall, D.: Dewdrop: An energy-aware runtime for computational RFID. In: NSDI (2011)Google Scholar
  10. 10.
    Cervenka, V., Komosny, D., Malina, L., Mraz, L.: Energy efficient public key cryptography in wireless sensor networks. In: Elleithy, K., Sobh, T. (eds.) Innovations and Advances in Computer, Information, Systems Sciences, and Engineering. Lecture Notes in Electrical Engineering, vol. 152, pp. 497–509. Springer, New York (2013). CrossRefGoogle Scholar
  11. 11.
    Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  12. 12.
    Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2003)Google Scholar
  13. 13.
    Lai, E., Redfern, A., Wright, P.: Vibration powered battery-assisted passive RFID tag. In: Enokido, T., Yan, L., Xiao, B., Kim, D.Y., Dai, Y.-S., Yang, L.T. (eds.) EUC-WS 2005. LNCS, vol. 3823, pp. 1058–1068. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Liu, A., Ning, P.: TinyECC: a configurable library for elliptic curve cryptography in wireless sensor networks. In: Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IPSN ’08, pp. 245–256. IEEE Computer Society, Washington, DC (2008).
  15. 15.
    Mane, D., Schaumont, P.: Energy-architecture tuning for ECC-based RFID tags. In: Hutter, M., Schmidt, J.-M. (eds.) RFIDsec 2013. LNCS, vol. 8262, pp. 145–158. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    de Meulenaer, G., Gosset, F., Standaert, O.X., Pereira, O.: On the energy cost of communication and cryptography in wireless sensor networks. In: 2008 IEEE International Conference on Wireless and Mobile Computing Networking and Communications, WIMOB ’08, pp. 580–585, October 2008Google Scholar
  17. 17.
    Mitcheson, P., Yeatman, E., Rao, G., Holmes, A., Green, T.: Energy harvesting from human and machine motion for wireless electronic devices. Proc. IEEE 96(9), 1457–1486 (2008)CrossRefGoogle Scholar
  18. 18.
    Kong, N., Cochran, T., Ha, D., Lin, H., Inman, D.: A self-powered power management circuit for energy harvested by a piezoelectric cantilever. In: Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE, APEC2010 (2010).
  19. 19.
    O’Flynn, C.: OPENADC (2012).
  20. 20.
  21. 21.
    Oliveira, L.B., Aranha, D.F., Gouvêa, C.P.L., Scott, M., Câmara, D.F., López, J., Dahab, R.: TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor networks. Comput. Commun. 34(3), 485–493 (2011)CrossRefGoogle Scholar
  22. 22.
    Pendl, C., Pelnar, M., Hutter, M.: Elliptic curve cryptography on the WISP UHF RFID tag. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 32–47. Springer, Heidelberg (2012)Google Scholar
  23. 23.
    Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.: Design considerations for solar energy harvesting wireless embedded systems. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, IPSN ’05, IEEE Press, Piscataway, NJ, USA (2005).
  24. 24.
    Ransford, B., Sorber, J., Fu, K.: Mementos: system support for long-running computation on RFID-scale devices. In: ASPLOS, pp. 159–170 (2011)Google Scholar
  25. 25.
    Rohde, S., Eisenbarth, T., Dahmen, E., Buchmann, J., Paar, C.: Fast hash-based signatures on constrained devices. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 104–117. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Struik, R.: AEAD ciphers for highly constrained networks. In: DIAC (2013).
  27. 27.
    Vullers, R., Schaijk, R., Visser, H., Penders, J., Hoof, C.: Energy harvesting for autonomous wireless sensor networks. IEEE Solid State Circ. Mag. 2(2), 29–38 (2010)CrossRefGoogle Scholar
  28. 28.
    Wander, A., Gura, N., Eberle, H., Gupta, V., Shantz, S.: Energy analysis of public-key cryptography for wireless sensor networks. In: 2005 Third IEEE International Conference on Pervasive Computing and Communications, PerCom 2005, pp. 324–328, March 2005Google Scholar
  29. 29.
    Wenger, E., Feldhofer, M., Felber, N.: Low-resource hardware design of an elliptic curve processor for contactless devices. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 92–106. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Wenger, E., Werner, M.: Evaluating 16-bit processors for elliptic curve cryptography. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 166–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Krishna Pabbuleti
    • 1
  • Deepak Mane
    • 1
  • Patrick Schaumont
    • 1
  1. 1.Secure Embedded Systems, Bradley Department of ECECenter for Embedded Systems for Critical Applications, Virginia TechBlacksburgUSA

Personalised recommendations