Advertisement

Non-Linear Collision Analysis

  • Xin YeEmail author
  • Cong Chen
  • Thomas Eisenbarth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8651)

Abstract

As an unsolved issue for embedded crypto solutions, side channel attacks are challenging the security of the Internet of things. Due to the advancement of chip technology, the nature of side channel leakage becomes hard to characterize with a fixed leakage model. In this work, a new non-linear collision attack is proposed in the pursuit of the side channel distinguishers with minimal assumption of leakage behavior. The attack relies on a weaker assumption than classical DPA: it does not require a specific leakage model. The mechanism of collision generation enables independent recovery of partial keys so that for the first time the collision attack can be fairly compared with other standard side channel distinguishers. The efficiency of this attack has been verified by experiments on an unprotected microcontroller implementation of AES. Its immunity to modeling errors is confirmed through simulation of a broad range of leakage functions.

Keywords

Side Channel Side Channel Attack Differential Power Analysis Collision Attack Correlation Power Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. #1261399 and Grant No. #1314770. We would like to thank the anonymous reviewers for their helpful comments.

References

  1. 1.
    Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bogdanov, A., Kizhvatov, I.: Beyond the limits of DPA: combined side-channel collision attacks. IEEE Trans. Comput. PP(99), 1 (2011)Google Scholar
  4. 4.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage of a chip?. Cryptology ePrint Archive, Report 2013/706 (2013). http://eprint.iacr.org/
  7. 7.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak information? an a priori statistical power analysis of leakage detection tests. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–505. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Moradi, A.: Statistical tools flavor side-channel collision attacks. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 428–445. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Poettering, B.: Rijndael furious. Implementation. http://point-at-infinity.org/avraes/
  13. 13.
    Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A formal study of power variability issues and side-channel attacks for nanoscale devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel distinguishers. J. Cryptogr. Eng. 1(2), 145–160 (2011)CrossRefGoogle Scholar
  20. 20.
    Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov-Smirnov test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA and the magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–205. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  22. 22.
    Ye, X., Eisenbarth, T.: Wide collisions in practice. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 329–343. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Worcester Polytechnic InstituteWorcesterUSA

Personalised recommendations