International Workshop on Selected Areas in Cryptography

SAC 2014: Selected Areas in Cryptography -- SAC 2014 pp 1-19 | Cite as

Malicious Hashing: Eve’s Variant of SHA-1

  • Ange Albertini
  • Jean-Philippe Aumasson
  • Maria Eichlseder
  • Florian Mendel
  • Martin Schläffer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8781)

Abstract

We present collisions for a version of SHA-1 with modified constants, where the colliding payloads are valid binary files. Examples are given of colliding executables, archives, and images. Our malicious SHA-1 instances have round constants that differ from the original ones in only 40 bits (on average). Modified versions of cryptographic standards are typically used on closed systems (e.g., in pay-TV, media and gaming platforms) and aim to differentiate cryptographic components across customers or services. Our proof-of-concept thus demonstrates the exploitability of custom SHA-1 versions for malicious purposes, such as the injection of user surveillance features. To encourage further research on such malicious hash functions, we propose definitions of malicious hash functions and of associated security notions.

Notes

Acknowledgments

The work has been supported by the Austrian Government through the research program FIT-IT Trust in IT Systems (Project SePAG, Project Number 835919).

References

  1. 1.
    Adinetz, A.V., Grechnikov, E.A.: Building a collision for 75-round reduced SHA-1 using GPU clusters. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 933–944. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hardware trojans. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 197–214. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Biham, E.: Cryptanalysis of Patarin’s 2-round public key system with S boxes (2R). In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 408–416. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Blaze, M., Feigenbaum, J., Leighton, T.: Master key cryptosystems. CRYPTO 1995 rump session (1995). http://www.crypto.com/papers/mkcs.pdf
  6. 6.
    Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)MATHGoogle Scholar
  7. 7.
    Brown, D.R.L., Gjøsteen, K.: A security analysis of the NIST SP 800–90 elliptic curve random number generator. Cryptology ePrint Archive, Report 2007/048 (2007)Google Scholar
  8. 8.
    Chabaud, F., Joux, A.: Differential collisions in SHA-0. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Damgård, I.: A design principle for hash functions. In: Brassard, G., [6], pp. 416–427Google Scholar
  11. 11.
    Daniel R. L. Brown, S.A.V.: Elliptic curve random number generation. Patent. US 8396213 B2 (2006). http://www.google.com/patents/US8396213
  12. 12.
    Daum, M., Lucks, S.: Hash collisions (the poisoned message attack). CRYPTO 2005 rump session (2005). http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
  13. 13.
    De Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: on the full cost of collision search. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 56–73. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Filiol, E.: Malicious cryptography techniques for unreversable (malicious or not) binaries. CoRR abs/1009.4000 (2010)Google Scholar
  16. 16.
    Green, M.: A few more notes on NSA random number generators. Blog post, December 2013. http://blog.cryptographyengineering.com/2013/12/a-few-more-notes-on-nsa-random-number.html
  17. 17.
    Green, M.: The many flaws of Dual_EC_DRBG. Blog post, September 2013. http://blog.cryptographyengineering.com/2013/09/the-many-flaws-of-dualecdrbg.html
  18. 18.
    Johansson, T., Nguyen, P.Q. (eds.): EUROCRYPT 2013. LNCS, vol. 7881. Springer, Heidelberg (2013)MATHGoogle Scholar
  19. 19.
    Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Lin, L., Kasper, M., Güneysu, T., Paar, C., Burleson, W.: Trojan side-channels: lightweight hardware trojans through side-channel engineering. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 382–395. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Manuel, S.: Classification and generation of disturbance vectors for collision attacks against SHA-1. Des. Codes Crypt. 59(1–3), 247–263 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on reduced SHA-256. In: Johansson, T., Nguyen, P.Q., [18], pp. 262–278Google Scholar
  24. 24.
    Menn, J.: Exclusive: secret contract tied NSA and security industry pioneer. Reuters, December 2013. http://www.reuters.com/article/2013/12/20/us-usa-security-rsa-idUSBRE9BJ1C220131220
  25. 25.
    Merkle, R.C.: One way hash functions and DES. In: Brassard, G., [6], pp. 428–446Google Scholar
  26. 26.
    Murdoch, S.J., Lewis, S.: Embedding covert channels into TCP/IP. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 247–261. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    NIST: Recommendation for random number generation using deterministic random bit generators (revised). NIST Special Publication 800–90 (2007)Google Scholar
  28. 28.
    NIST: Secure hash standard (SHS). FIPS PUB 180–4 (2012)Google Scholar
  29. 29.
    Open crypto audit. http://opencryptoaudit.org. Accessed 28 May 2014
  30. 30.
    Patarin, J., Goubin, L.: Trapdoor one-way permutations and multivariate polynomials. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 356–368. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  31. 31.
    Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting coding theory for collision attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 78–95. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Rijmen, V., Preneel, B.: A family of trapdoor ciphers. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 139–148. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  34. 34.
    Schneier, B.: The NSA is breaking most encryption on the internet. Blog post, September 2013. https://www.schneier.com/blog/archives/2013/09/the_nsa_is_brea.html
  35. 35.
    Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudorandom generator. Cryptology ePrint Archive, Report 2006/190 (2006)Google Scholar
  36. 36.
    Shah, G., Molina, A., Blaze, M.: Keyboards and covert channels. In: USENIX Security Symposium, pp. 59–75 (2006)Google Scholar
  37. 37.
    Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision analysis. In: Johansson, T., Nguyen, P.Q., [18], pp. 245–261Google Scholar
  38. 38.
    Wagner, D., Bionbi, P.: Misimplementation of RC4. Submission for the Third Underhanded C Contest (2007). http://underhanded.xcott.com/?page_id=16
  39. 39.
    Wang, X., Yao, A.C., Yao, F.: Cryptanalysis on SHA-1. NIST - First Cryptographic Hash Workshop, October 31–November 1 (2005). http://csrc.nist.gov/groups/ST/hash/documents/Wang_SHA1-New-Result.pdf
  40. 40.
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  41. 41.
    Wu, H., Bao, F., Deng, R.H., Ye, Q.-Z.: Cryptanalysis of Rijmen-Preneel trapdoor ciphers. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 126–132. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  42. 42.
    Ding-Feng, Y., Kwok-Yan, L., Zong-Duo, D.: Cryptanalysis of 2R schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 315–325. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  43. 43.
    You broke the internet. http://youbroketheinternet.org. Accessed 28 May 2014
  44. 44.
    Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. Wiley, Chichester (2004)Google Scholar
  45. 45.
    Young, A., Yung, M.: Monkey: black-box symmetric ciphers designed for MON\(opolizing\) KEY\(s\). In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 122–133. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  46. 46.
    Young, A.L., Yung, M.: Backdoor attacks on black-box ciphers exploiting low-entropy plaintexts. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 297–311. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ange Albertini
    • 1
  • Jean-Philippe Aumasson
    • 2
  • Maria Eichlseder
    • 3
  • Florian Mendel
    • 3
  • Martin Schläffer
    • 3
  1. 1.CorkamiRavensburgGermany
  2. 2.Kudelski SecurityCheseaux-sur-LausanneSwitzerland
  3. 3.Graz University of TechnologyGrazAustria

Personalised recommendations