Patterns in the Fabric of Nature

  • Steven Weinstein
Part of the The Frontiers Collection book series (FRONTCOLL)


From classical mechanics to quantum field theory, the physical facts at one point in space are held to be independent of those at other points in space. I propose that we can usefully challenge this orthodoxy in order to explain otherwise puzzling correlations at both cosmological and microscopic scales.


Cosmic Microwave Background Quantum Correlation Statistical Independence Strong Locality Detector Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Aaronson, J. Watrous, Closed timelike curves make quantum and classical computing equivalent. arXiv:0808.2669v1
  2. 2.
    J.S. Bell, On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  3. 3.
    J.S. Bell, La nouvelle cuisine, in John S. Bell on the Foundations of Quantum Mechanics, ed. by M. Bell, K. Gottfried, M. Veltman (World Scientific, Singapore, 2001), pp. 216–234CrossRefGoogle Scholar
  4. 4.
    D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, 1951)Google Scholar
  5. 5.
    J. Conway, S. Kochen, The free will theorem. Found. Phys. 36, 1441–1473 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    O. De Costa Beauregard, S-matrix, Feynman zigzag and Einstein correlation. Phys. Lett. A67, 171–174 (1978)CrossRefADSGoogle Scholar
  7. 7.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefADSzbMATHGoogle Scholar
  8. 8.
    A. Fahmi, Non-locality and classical communication of the hidden variable theories (2005). arxiv:quant-ph/0511009
  9. 9.
    A. Fine, The Shaky Game: Einstein Realism and the Quantum Theory (University of Chicago Press, Chicago, 1986)Google Scholar
  10. 10.
    D. Hume, A Treatise of Human Nature (Oxford University Press, Oxford, 2000). (original publication)Google Scholar
  11. 11.
    P. Lewis, Conspiracy theories of quantum mechanics. Br. J. Philos. Sci. 57, 359–381 (2006)CrossRefGoogle Scholar
  12. 12.
    R. Penrose, Difficulties with inflationary cosmology, in Proceedings of the 14th Texas Symposium on Relativistic Astrophysics (New York Academy of Sciences 1989), pp. 249–264Google Scholar
  13. 13.
    H. Price, Time’s Arrow and Archimedes’ Point: New Directions for the Physics of Time (Oxford University Press, Oxford, 1996)Google Scholar
  14. 14.
    M.P. Seevinck, Parts and Wholes: An Inquiry into Quantum and Classical Correlations. PhD thesis, Utrecht University (2008). arxiv:0811.1027
  15. 15.
    A. Shimony, An exchange on local beables, in Search for a Naturalistic World View, vol. II (Cambridge University Press, Cambridge, 1993), pp. 163–170Google Scholar
  16. 16.
    R.I. Sutherland, Bell’s theorem and backwards in time causality. Int. J. Theor. Phys. 22, 377–384 (1983)CrossRefGoogle Scholar
  17. 17.
    G. ’t Hooft. On the free will postulate in quantum mechanics (2007). arXiv:quant-ph/0701097
  18. 18.
    S. Weinstein, Nonlocality without nonlocality. Found. Phys. 39, 921–936, (2009).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.U. Waterloo Department of Philosophy200 University Ave WestWaterlooCanada

Personalised recommendations