Advertisement

Against Spacetime

  • Giovanni Amelino-CameliaEmail author
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

The notion of “location” physics really needs is exclusively the one of “detection at a given detector” and the time for each such detection is most primitively assessed as the readout of some specific material clock. The redundant abstraction of a macroscopic spacetime organizing all our particle detections is unproblematic and extremely useful in the classical-mechanics regime. But I here observe that in some of the contexts where quantum mechanics is most significant, such as quantum tunneling through a barrier, the spacetime abstraction proves to be cumbersome. And I argue that in quantum-gravity research we might limit our opportunities for discovery if we insist on the availability of a spacetime picture.

References

  1. 1.
    H. Poincaré, Science and Hypothesis, Chapter 12 (Walter Scott Publishing, London, 1905)Google Scholar
  2. 2.
    G. Amelino-Camelia, Spacetime in special-relativistic quantum theory, in preparationGoogle Scholar
  3. 3.
    T.D. Newton, E.P. Wigner, Rev. Mod. Phys. 21, 400 (1949)CrossRefADSzbMATHGoogle Scholar
  4. 4.
    B. Schroer, arXiv:0711.4600
  5. 5.
    R.-A. Alemañ-Berenguer, arXiv:philsci-archive.pitt.edu/4313
  6. 6.
    J.J. Halliwell, Phys. Rev. D64, 04408 (2001)MathSciNetGoogle Scholar
  7. 7.
    R. Gambini, R.A. Porto, Phys. Rev. D63, 105014 (2001)ADSMathSciNetGoogle Scholar
  8. 8.
    M. Reisenberger, C. Rovelli, Phys. Rev. D65, 125016 (2002)ADSMathSciNetGoogle Scholar
  9. 9.
    L. Freidel, F. Girelli, E.R. Livine, Phys. Rev. D75, 105016 (2007)ADSMathSciNetGoogle Scholar
  10. 10.
    L.A. MacColl, Phys. Rev. 40, 621 (1932)CrossRefADSGoogle Scholar
  11. 11.
    E.P. Wigner, Phys. Rev. 98, 145 (1955)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    A.M. Steinberg, Lect. Notes Phys. 734, 333 (2008)CrossRefADSGoogle Scholar
  13. 13.
    H.G. Winful, Phys. Rep. 436, 1 (2006)CrossRefADSGoogle Scholar
  14. 14.
    A.M. Steinberg, P. Kwiat, R. Chiao, Phys. Rev. Lett. 71, 708 (1993)CrossRefADSGoogle Scholar
  15. 15.
    M.D. Stenner, D.J. Gauthier, M.A. Neifeld, Nature 425, 695 (2003)CrossRefADSGoogle Scholar
  16. 16.
    S. Carlip, Lect. Notes Phys. 769, 89 (2009)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D84, 084010 (2011). arXiv:1101.0931
  18. 18.
    G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, Gen. Relativ. Gravit. 43, 2547 (2011). arXiv:1106.0313
  19. 19.
    S. Majid, H. Ruegg, Phys. Lett. B334, 348 (1994)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
  21. 21.
    D. Oriti, arXiv:0912.2441
  22. 22.
    G. Amelino-Camelia, Nature 408, 661 (2000). arXiv:gr-qc/0012049
  23. 23.
    M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, 1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Dipartimento di FisicaSapienza Università di Roma and INFN Sez. Roma1RomeItaly

Personalised recommendations