Advertisement

Is Quantum Linear Superposition an Exact Principle of Nature?

  • Angelo BassiEmail author
  • Tejinder Singh
  • Hendrik Ulbricht
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

The principle of linear superposition is a hallmark of quantum theory. It has been confirmed experimentally for photons, electrons, neutrons, atoms, for molecules having masses up to ten thousand amu, and also in collective states such as SQUIDs and Bose-Einstein condensates. However, the principle does not seem to hold for positions of large objects! Why for instance, a table is never found to be in two places at the same time? One possible explanation for the absence of macroscopic superpositions is that quantum theory is an approximation to a stochastic nonlinear theory. This hypothesis may have its fundamental origins in gravitational physics, and is being put to test by modern ongoing experiments on matter wave interferometry.

Keywords

Quantum Theory Interference Pattern Linear Superposition Fundamental Constant Interference Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by a grant from the John Templeton Foundation.

References

  1. 1.
    K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, M. Arndt, Rev. Mod. Phys. 84, 157 (2011)CrossRefADSGoogle Scholar
  2. 2.
    M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. Van der Zouw, A. Zeilinger, Nature 401, 680 (1999)CrossRefADSGoogle Scholar
  3. 3.
    S.L. Adler, A. Bassi, Science 325, 275 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Bassi, G.C. Ghirardi, Phys. Rep. 379, 257 (2003)CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)CrossRefADSGoogle Scholar
  6. 6.
    G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    G.C. Ghirardi, P. Pearle, A. Rimini, Phys. Rev. A 42, 78 (1990)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    A. Bassi, D.G.M. Salvetti, J. Phys. A 40, 9859 (2007)CrossRefADSzbMATHMathSciNetGoogle Scholar
  9. 9.
    S.L. Adler, J. Phys. A 40, 2935 (2007)CrossRefADSzbMATHMathSciNetGoogle Scholar
  10. 10.
    A. Bassi, D.-A. Deckert, L. Ferialdi, Europhys. Lett. 92, 50006 (2010)CrossRefADSGoogle Scholar
  11. 11.
    W. Feldmann, R. Tumulka, J. Phys. A: Math. Theor. 45, 065304 (2012)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    S. Nimmrichter, K. Hornberger, P. Haslinger, M. Arndt, Phys. Rev. A 83, 043621 (2011)CrossRefADSGoogle Scholar
  13. 13.
    O. Romero-Isart, Phys. Rev. A 84, 052121 (2011)CrossRefADSGoogle Scholar
  14. 14.
    M. Arndt, A. Ekers, W. von Klitzing, H. Ulbricht, New J. Phys. 14 (2011)Google Scholar
  15. 15.
    J. Clauser, M. Reinsch, Appl. Phys. B: Lasers Opt. 54, 380 (1992)CrossRefADSGoogle Scholar
  16. 16.
    K. Hornberger, S. Gerlich, H. Ulbricht, L. Hackermüller, S. Nimmrichter, I. Goldt, O. Boltalina, M. Arndt, New J. Phys. 11, 043032 (2009)CrossRefADSGoogle Scholar
  17. 17.
    S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter, K. Hornberger, P.J. Fagan, J. Tüxen, M. Mayor, M. Arndt, Nat. Commun. 2, 263 (2011)CrossRefADSGoogle Scholar
  18. 18.
    S. Nimmrichter, P. Haslinger, K. Hornberger, M. Arndt, New J. Phys. 13, 075002 (2011)Google Scholar
  19. 19.
    S. Bose, K. Jacobs, P. Knight, Phys. Rev. A 56, 4175 (1997)CrossRefADSGoogle Scholar
  20. 20.
    W. Marshall, C. Simon, R. Penrose, D. Bouwmeester, Phys. Rev. Lett. 91, 130401 (2003)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    T. Kippenberg, K. Vahala, Science 321, 1172 (2008)CrossRefADSGoogle Scholar
  22. 22.
    M. Aspelmeyer, S. Groeblacher, K. Hammerer, N. Kiesel, J. Opt. Soc. Am. B 27, A189 (2010)CrossRefADSGoogle Scholar
  23. 23.
    J. Chan, T. Alegre, A. Safavi-Naeini, J. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, O. Painter, Nature 478, 89 (2011)CrossRefADSGoogle Scholar
  24. 24.
    A. O’Connell, M. Hofheinz, M. Ansmann, R. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides et al., Nature 464, 697 (2010)CrossRefADSGoogle Scholar
  25. 25.
    O. Romero-Isart, A. Panzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, J. Cirac, Phys. Rev. Lett. 107, 020405 (2011)CrossRefADSGoogle Scholar
  26. 26.
    F. Karolyhazy, A. Frenkel, B. Lukács, in Quantum Concepts in Space and Time, ed. by R. Penrose, C.J. Isham (Clarendon, Oxford, 1986)Google Scholar
  27. 27.
    L. Diósi, Phys. Lett. A 120, 377 (1987)CrossRefADSGoogle Scholar
  28. 28.
    R. Penrose, Gen. Relativ. Gravit. 28, 581 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  29. 29.
    L. Diósi, Phys. Rev. A 40, 1165 (1989)CrossRefADSGoogle Scholar
  30. 30.
    S.L. Adler, Quantum Theory as an Emergent Phenomenon (Cambridge University Press, Cambridge, 2004) pp. xii \(+\) 225Google Scholar
  31. 31.
    T.P. Singh, J. Phys. Conf. Ser. 174, 012024 (2009)CrossRefADSGoogle Scholar
  32. 32.
    T. P. Singh, (2011). arXiv:1106.0911
  33. 33.
    K. Lochan, T.P. Singh, Phys. Lett. A 375, 3747 (2011)CrossRefADSzbMATHMathSciNetGoogle Scholar
  34. 34.
    K. Lochan, S. Satin, T.P. Singh, Found. Phys. 42, 1556 (2012)CrossRefADSzbMATHMathSciNetGoogle Scholar
  35. 35.
    O. Oreshkov, F. Costa, C. Brukner, Nat. Commun. 3, 1092 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Angelo Bassi
    • 1
    Email author
  • Tejinder Singh
    • 2
  • Hendrik Ulbricht
    • 3
  1. 1.Department of PhysicsUniversity of TriesteTriesteItaly
  2. 2.Tata Institute of Fundamental ResearchMumbaiIndia
  3. 3.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUK

Personalised recommendations