Cryptanalysis of Reduced-Round SIMON32 and SIMON48

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8885)

Abstract

SIMON family is one of the recent lightweight block cipher designs introduced by NSA. So far there have been several cryptanalytic results on this cipher by means of differential, linear and impossible differential cryptanalysis. In this paper, we study the security of SIMON32, SIMON48/72 and SIMON48/96 by using integral, zero-correlation linear and impossible differential cryptanalysis. Firstly, we present a novel experimental approach to construct the best known integral distinguishers of SIMON32. The small block size, 32 bits, of SIMON32 enables us to experimentally find a 15-round integral distinguisher, based on which we present a key recovery attack on 21-round SIMON32, while previous best results only achieved 19 rounds. Moreover, we attack 20-round SIMON32, 20-round SIMON48/72 and 21-round SIMON48/96 based on 11 and 12-round zero-correlation linear hulls of SIMON32 and SIMON48 respectively. Finally, we propose new impossible differential attacks which improve the previous impossible differential attacks. Our analysis shows that SIMON maintains enough security margin.

Keywords

SIMON Integral Zero-correlation Impossible differential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis of Reduced-round SIMON32 and SIMON48. Cryptology ePrint Archive, Report 2014/761 (2014). http://eprint.iacr.org/
  2. 2.
    Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICEBERG: An Involutional Cipher Efficient for Block Encryption in Reconfigurable Hardware. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 279–299. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Lim, C.H., Korkishko, T.: mCrypton – A Lightweight Block Cipher for Security of Low-Cost RFID Tags and Sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Hong, D., et al.: HIGHT: A New Block Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. In: Preneel, Takagi [28], pp. 326–341Google Scholar
  8. 8.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An Ultra-Lightweight Blockcipher. In: Preneel, Takagi [28], pp. 342–357Google Scholar
  9. 9.
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: A New Family of Lightweight Block Ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012)Google Scholar
  10. 10.
    Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: PRINCE – A Low-Latency Block Cipher for Pervasive Computing Applications - Extended Abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight Block Cipher for Multiple Platforms. In: Knudsen, Wu [29], pp. 339–354Google Scholar
  13. 13.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404 (2013)Google Scholar
  14. 14.
    Abed, F., List, E., Wenzel, J., Lucks, S.: Differential Cryptanalysis of round-reduced Simon and Speck. In: Cid, C., Rechberger, C. (eds.) International Workshop on Fast Software Encryption - FSE 2014. LNCS. Springer (2104)Google Scholar
  15. 15.
    Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON Family of Block Ciphers. Cryptology ePrint Archive, Report 2013/543 (2013). http://eprint.iacr.org/
  16. 16.
    Alizadeh, J., Bagheri, N., Gauravaram, P., Kumar, A., Kumar Sanadhya, S.: Linear Cryptanalysis of Round Reduced SIMON. Cryptology ePrint Archive, Report 2013/663 (2013). http://eprint.iacr.org/
  17. 17.
    Biryukov, A., Roy, A., Velichkov, V.: Differential Analysis of Block Ciphers SIMON and SPECK. In: Cid, C., Rechberger, C. (eds.) International Workshop on Fast Software Encryption - FSE 2014. LNCS. Springer (2104)Google Scholar
  18. 18.
    Biryukov, A., Velichkov, V.: Automatic Search for Differential Trails in ARX Ciphers. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  19. 19.
    Wang, N., Wang, X., Jia, K., Zhao, J.: Improved Differential Attacks on Reduced SIMON Versions. Cryptology ePrint Archive, Report 2014/448 (2014). http://eprint.iacr.org/
  20. 20.
    Abed, F., List, E., Lucks, S., Wenzel, J.: Differential and Linear Cryptanalysis of Reduced-Round Simon. Cryptology ePrint Archive, Report 2013/526 (2013). http://eprint.iacr.org/
  21. 21.
    Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher SQUARE. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Sasaki, Y., Wang, L.: Meet-in-the-Middle Technique for Integral Attacks against Feistel Ciphers. In: Knudsen, Wu [29], pp. 234–251Google Scholar
  25. 25.
    Sasaki, Y., Wang, L.: Bitwise Partial-sum on HIGHT: A New Tool for Integral Analysis against ARX Designs. In: ICISC 2013, vol. 8565. LNCS, pp. 1–14. Springer, Heidelberg (2013)Google Scholar
  26. 26.
    Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanalysis of block ciphers. Des. Codes Cryptography 70(3), 369–383 (2014)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Harpes, C., Kramer, G.G., Massey, J.L.: A Generalization of Linear Cryptanalysis and the Applicability of Matsui’s Piling-Up Lemma. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  28. 28.
    Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg (2011)MATHGoogle Scholar
  29. 29.
    Knudsen, L.R., Wu, H. (eds.): SAC 2012. LNCS, vol. 7707. Springer, Heidelberg (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.ESAT/COSIC and iMindsKU LeuvenLeuvenBelgium
  3. 3.ICTEAM-Crypto GroupUniversite catholique de LouvainLouvainBelgium
  4. 4.NTT Secure Platform LaboratoriesTokyoJapan

Personalised recommendations