Characterization of Reachable Attractors Using Petri Net Unfoldings

  • Thomas Chatain
  • Stefan Haar
  • Loïg Jezequel
  • Loïc Paulevé
  • Stefan Schwoon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8859)

Abstract

Attractors of network dynamics represent the long-term behaviours of the modelled system. Their characterization is therefore crucial for understanding the response and differentiation capabilities of a dynamical system. In the scope of qualitative models of interaction networks, the computation of attractors reachable from a given state of the network faces combinatorial issues due to the state space explosion.

In this paper, we present a new algorithm that exploits the concurrency between transitions of parallel acting components in order to reduce the search space. The algorithm relies on Petri net unfoldings that can be used to compute a compact representation of the dynamics. We illustrate the applicability of the algorithm with Petri net models of cell signalling and regulation networks, Boolean and multi-valued. The proposed approach aims at being complementary to existing methods for deriving the attractors of Boolean models, while being generic since it applies to any safe Petri net.

Keywords

dynamical systems attractors concurrency qualitative models biological networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aracena, J.: Maximum number of fixed points in regulatory boolean networks. Bull. Math. Biol. 70(5), 1398–1409 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez, C., Schwoon, S.: Efficient unfolding of contextual Petri nets. TCS 449, 2–22 (2012)CrossRefMATHGoogle Scholar
  3. 3.
    Berntenis, N., Ebeling, M.: Detection of attractors of large boolean networks via exhaustive enumeration of appropriate subspaces of the state space. BMC Bioinformatics 14(1), 361 (2013)CrossRefGoogle Scholar
  4. 4.
    Casu, G., Pinna, G.M.: Flow unfolding of safe nets. In: Petri Nets (2014)Google Scholar
  5. 5.
    Chaouiya, C., Naldi, A., Remy, E., Thieffry, D.: Petri net representation of multi-valued logical regulatory graphs. Natural Computing 10(2), 727–750 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Esparza, J., Heljanko, K.: Unfoldings – A Partial-Order Approach to Model Checking. Springer (2008)Google Scholar
  8. 8.
    Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. FMSD 20, 285–310 (2002)MATHGoogle Scholar
  9. 9.
    Esparza, J., Schröter, C.: Unfolding based algorithms for the reachability problem. Fund. Inf. 47(3-4), 231–245 (2001)MATHGoogle Scholar
  10. 10.
    Faure, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), 124–131 (2006)CrossRefGoogle Scholar
  11. 11.
    Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17), 1917–1925 (2008)CrossRefGoogle Scholar
  12. 12.
    Hinkelmann, F., Brandon, M., Guang, B., McNeill, R., Blekherman, G., Veliz-Cuba, A., Laubenbacher, R.: ADAM: Analysis of discrete models of biological systems using computer algebra. BMC Bioinformatics 12(1), 295 (2011)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings. Acta Inf. 40(2), 95–118 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Khomenko, V., Mokhov, A.: An algorithm for direct construction of complete merged processes. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 89–108. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    McMillan, K.L.: Using unfoldings to avoid the state explosion problem inthe verification of asynchronous circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  17. 17.
    Melliti, T., Noual, M., Regnault, D., Sené, S., Sobieraj, J.: Full characterization of attractors for two intersected asynchronous boolean automata cycles. CoRR, abs/1310.5747 (2013)Google Scholar
  18. 18.
    Murata, T.: Petri nets: Properties, analysis and applications. Proc. of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  19. 19.
    Naldi, A., Berenguier, D.: Logical modelling of regulatory networks with GINsim. Biosystems 97(2), 134–139 (2009)CrossRefGoogle Scholar
  20. 20.
    Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 233–247. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Paulevé, L., Magnin, M., Roux, O.: Refining dynamics of gene regulatory networks in a stochastic π-calculus framework. In: Priami, C., Back, R.-J., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIII. LNCS, vol. 6575, pp. 171–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Paulevé, L., Richard, A.: Topological Fixed Points in Boolean Networks. C. R. Acad. Sci. - Series I - Mathematics 348(15-16), 825–828 (2010)MATHGoogle Scholar
  23. 23.
    Richard, A.: Positive circuits and maximal number of fixed points in discrete dynamical systems. Discrete Appl. Math. 157(15), 3281–3288 (2009)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Richard, A.: Negative circuits and sustained oscillations in asynchronous automata networks. Adv. in Appl. Math. 44(4), 378–392 (2010)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety, M., Mattern, J., Schupp, I., Chaouiya, C., Thieffry, D., Poustka, A., Wiemann, S., Beissbarth, T., Arlt, D.: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Systems Biology 3(1) (2009)Google Scholar
  26. 26.
  27. 27.
    Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks – II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57, 277–297 (1995)MATHGoogle Scholar
  28. 28.
    Weinstein, N., Mendoza, L.: A network model for the specification of vulval precursor cells and cell fusion control in caenorhabditis elegans. Frontiers in Genetics 4(112) (2013)Google Scholar
  29. 29.
    Zañudo, J.G.T., Albert, R.: An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos 23, 025111 (2013)Google Scholar
  30. 30.
    Zheng, D., Yang, G., Li, X., Wang, Z., Liu, F., He, L.: An efficient algorithm for computing attractors of synchronous and asynchronous boolean networks. PLoS ONE 8(4), e60593 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Chatain
    • 1
  • Stefan Haar
    • 1
  • Loïg Jezequel
    • 1
  • Loïc Paulevé
    • 2
    • 3
  • Stefan Schwoon
    • 1
  1. 1.LSV, ENS CachanINRIA, CNRSFrance
  2. 2.CNRS & Laboratoire de Recherche en Informatique UMR CNRS 8623Université Paris-SudOrsay CedexFrance
  3. 3.team AMIBInria Saclay - Ile de FrancePalaiseauFrance

Personalised recommendations