Fragmentations with Pitch, Rhythm and Parallelism Constraints for Variation Matching

  • Mathieu Giraud
  • Ken Déguernel
  • Emilios Cambouropoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8905)


Composers commonly employ ornamentation and elaboration techniques to generate varied versions of an initial core melodic idea. Dynamic programming techniques, based on edit operations, are used to find similarities between melodic strings. However, replacements, insertions and deletions may give non-musically pertinent similarities, especially if rhythmic or metrical structure is not considered. We propose, herein, to compute the similarity between a reduced query and a melody employing only fragmentation operations. Such fragmentations transform one note from the reduced query into a possible large set of notes, taking into account pitch and rhythm constraints, as well as elementary parallelism information. We test the proposed algorithm on four “theme and variations” piano pieces by W. A. Mozart and L. van Beethoven and show that the proposed constrained fragmentation operations are capable of detecting simple variations with high sensitivity and specificity.


Melodic similarity Reduced melody Variations Fragmentation Musical parallelism 


  1. 1.
    Ahlbäck, S.: Melodic similarity as a determinant of melody structure. Musicae Scientiae Discussion Forum 4A, 235–280 (2007)CrossRefGoogle Scholar
  2. 2.
    Barton, C., Cambouropoulos, E., Iliopoulos, C.S., Lipták, Z.: Melodic string matching via interval consolidation and fragmentation. In: Artificial Intelligence and Innovations Conference (AIAI 2012), pp. 460–469 (2012)Google Scholar
  3. 3.
    Cambouropoulos, E.: How similar is similar? Musicae Scientiae Discussion Forum 4A, 7–24 (2009)CrossRefGoogle Scholar
  4. 4.
    Cambouropoulos, E., Crawford, T., Iliopoulos, C.S.: Pattern processing in melodic sequences: challenges, caveats and prospects. In: Artifical Intelligence and Simulation of Behaviour (AISB 99), pp. 42–47 (1999)Google Scholar
  5. 5.
    Cambouropoulos, E., Crochemore, M., Iliopoulos, C.S., Mouchard, L., Pinzon, Y.J.: Algorithms for computing approximate repetitions in musical sequences. Int. J. Comput. Math., 129–144 (1999)Google Scholar
  6. 6.
  7. 7.
    Clifford, R., Iliopoulos, C.S.: Approximate string matching for music analysis. Soft. Comput. 8(9), 597–603 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Conklin, D., Anagnostopoulou, C.: Segmental pattern discovery in music. INFORMS J. Comput. 18(3), 285–293 (2006)CrossRefGoogle Scholar
  9. 9.
    Crawford, T., Iliopoulos, C.S., Raman, R.: String matching techniques for musical similarity and melodic recognition. Comput. Musicology 11, 71–100 (1998)Google Scholar
  10. 10.
    Deutsch, D., Feroe, J.: The internal representation of pitch sequences in tonal music. Psychol. Rev. 88(6), 503–522 (1981)CrossRefGoogle Scholar
  11. 11.
    Giraud, M., Groult, R., Levé, F.: Subject and counter-subject detection for analysis of the Well-Tempered Clavier fugues. In: Computer Music Modeling and Retrieval (CMMR 2012) (2012)Google Scholar
  12. 12.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, New York (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Hanna, P., Ferraro, P., Robine, M.: On optimizing the editing algorithms for evaluating similarity between monophonic musical sequences. J. New Music Res. 36, 267–279 (2007).
  14. 14.
    Hewlett, W.B., Selfridge-Field, E. (eds.): Melodic Similarity: Concepts, Procedures, and Applications. MIT Press, Cambridge (1998)Google Scholar
  15. 15.
    Huron, D.: Music information processing using the Humdrum toolkit: concepts, examples, and lessons. Comput. Music J. 26(2), 11–26 (2002)CrossRefGoogle Scholar
  16. 16.
    Kageyama, T., Mochizuki, K., Takashima, Y.: Melody retrieval with humming. In: International Computer Music Conference, pp. 349–351 (1993)Google Scholar
  17. 17.
    Lartillot, O.: Motivic pattern extraction in symbolic domain. In: Intelligent Music Information Systems: Tools and Methodologies, pp. 236–260 (2007)Google Scholar
  18. 18.
    Lemström, K., Ukkonen, E.: Including interval encoding into edit distance based music comparison and retrieval. In: Symposium on Creative and Cultural Aspects and Applications of AI and Cognitive Science (AISB 2000), pp. 53–60 (2000)Google Scholar
  19. 19.
    Lerdhal, F., Jackendoff, R.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983, 1996)Google Scholar
  20. 20.
    Marsden, A.: Recognition of variations using automatic Schenkerian reduction. In: International Society for Music Information Retrieval Conference (ISMIR 2010), pp. 501–506 (2010)Google Scholar
  21. 21.
    Marsden, A.: Interrogating melodic similarity: a definitive phenomenon or the product of interpretation? J. New Music Res. 41(4), 323–335 (2012)CrossRefGoogle Scholar
  22. 22.
    Meredith, D.: A geometric language for representing structure in polyphonic music. In: International Society for Music Information Retrieval Conference (ISMIR 2012) (2012)Google Scholar
  23. 23.
    Mongeau, M., Sankoff, D.: Comparison of musical sequences. Comput. Humanit. 24, 161–175 (1990)CrossRefGoogle Scholar
  24. 24.
    Mäkinena, V., Navarro, G., Ukkonen, E.: Algorithms for transposition invariant string matching (extended abstract). In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 191–202. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Müllensiefen, D., Frieler, K.: Modelling experts’ notion of melodic similarity. Musicae Scientiae Discussion Forum 4A, 183–210 (2007)CrossRefGoogle Scholar
  26. 26.
    Typke, R.: Music retrieval based on melodic similarity. Ph.D. thesis, Univ. Utrecht (2007)Google Scholar
  27. 27.
    Ukkonen, E., Lemström, K., Mäkinen, V.: Geometric algorithms for transposition invariant content based music retrieval. In: International Conference on Music Information Retrieval (ISMIR 2003), pp. 193–199 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mathieu Giraud
    • 1
  • Ken Déguernel
    • 1
  • Emilios Cambouropoulos
    • 2
  1. 1.Laboratoire d’Informatique Fondamentale de Lille (LIFL)UMR CNRS 8022, Université Lille 1Villeneuve d’AscqFrance
  2. 2.Department of Music StudiesAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations