Advertisement

Modelling Two Emotion Regulation Strategies as Key Features of Therapeutic Empathy

  • Juan Martínez-Miranda
  • Adrián Bresó
  • Juan Miguel García-Gómez
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8750)

Abstract

Computational models of affective processes have allowed the construction of synthetic characters able to produce empathic behaviours. The use of empathy, as a strategy to enhance engagement and cooperation with human pairs has proved good results in different application domains. Mental care is a particular area where the use of empathic virtual characters would offer several advantages facilitating the self-treatment management. Empathic responses in counselling and psychotherapy differ from “natural” empathy produced in everyday situations. Therapeutic empathy requires an emotional involvement of the therapist with the patient and an emotional detachment for a more objective appraisal of the situation. This paper introduces a model of emotion regulation as the first steps to get therapeutic empathy responses in a virtual agent constructed to support the treatment of major depression. The modelling of two specific strategies of emotion regulation based on Gross theory (cognitive change and response modulation) is described.

Keywords

Affective process modelling Emotion regulation Reappraisal Response modulation Virtual agents 

Notes

Acknowledgements

This paper reflects only the author’s views. The European Community is not liable for any use that may be made of the information contained herein. This research is carried out within the EU-FP7 Project “Help4Mood—A Computational Distributed System to Support the Treatment of Patients with Major Depression” (ICT-248765).

References

  1. 1.
    Armony, J.L., Servan-Schreiber, D., Cohen, J.D., LeDoux, J.E.: Computational modeling of emotion: explorations through the anatomy and physiology of fear conditioning. Trends Cogn. Sci. 1, 28–34 (1997)CrossRefGoogle Scholar
  2. 2.
    Becker-Asano, C.: WASABI: affect simulation for agents with believable interactivity. Ph.D. thesis for the Faculty of Technology, University of Bielefeld, Bielefeld, Germany (2008)Google Scholar
  3. 3.
    Bickmore, T., Puskar, K., Schlenk, E., Pfeifer, L., Sereika, S.: Maintaining reality: relational agents for antipsychotic medication adherence. Interact. Comput. 22(4), 276–288 (2010)CrossRefGoogle Scholar
  4. 4.
    Bohart, A., Elliott, R., Greenberg, L.S., Watson, J.C.: Empathy. In: Norcross, J.C. (ed.) Psychotherapy Relationships that Work, pp. 89–108. Oxford University Press, New York (2002)Google Scholar
  5. 5.
    Bosse, T., de Lange, F.P.J.: Development of virtual agents with a theory of emotion regulation. In: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT’08, vol. 2, pp. 461–468 (2008)Google Scholar
  6. 6.
    Bosse, T., Pontier, M., Siddiqui, G.F., Treur, J.: Incorporating emotion regulation into virtual stories. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 339–347. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bosse, T., Pontier, M., Treur, J.: A computational model based on Gross’ emotion regulation theory. Cogn. Syst. Res. 11, 211–230 (2010)CrossRefGoogle Scholar
  8. 8.
    Burleson, W., Picard, R.: Affective agents: sustaining motivation to learn through failure and state of stuck. In: Proceedings of workshop of Social and Emotional Intelligence in Learning Environments, Brazil (2004)Google Scholar
  9. 9.
    Campos, J.J., Frankel, C.B., Camras, L.: On the nature of emotion regulation. Child Dev. 75, 377–394 (2004)CrossRefGoogle Scholar
  10. 10.
    Campos, J.J., Campos, R.G., Barrett, K.C.: Emergent themes in the study of emotional development and emotion regulation. Dev. Psychol. 25, 394–402 (1989)CrossRefGoogle Scholar
  11. 11.
    Clark, A.J.: Empathy in Counseling and Psychotherapy: Perspectives and Practices. Lawrence Erlbaum Associates, Mahwah (2007)Google Scholar
  12. 12.
    Davidson, R.J., Fox, A., Kalin, N.H.: Neural bases of emotion regulation in nonhuman primates and humans. In: Gross, J.J. (ed.) Handbook of Emotion Regulation, pp. 47–68. The Guilford Press, New York (2007)Google Scholar
  13. 13.
    Dias, J., Mascarenhas, S., Paiva, A.: FAtiMA modular: towards an agent architecture with a generic appraisal framework. In: Proceedings of the International Workshop on Standards for Emotion Modeling (2011)Google Scholar
  14. 14.
    Dias, J., Paiva, A.C.R.: Feeling and reasoning: a computational model for emotional characters. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 127–140. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Ekman, P.: Emotions Revealed: Recognizing Faces and Feelings to Improve Communication and Emotional Life. Times Books, New York (2003)Google Scholar
  16. 16.
    El Nasr, M.S., Yen, J., Iorger, T.: FLAME: fuzzy logic adaptive model of emotions. Auton. Agent Multi-Agent Syst. 3(3), 219–257 (2000)CrossRefGoogle Scholar
  17. 17.
    Frijda, N.H.: The Emotions. Cambridge University Press, Cambridge (1986)Google Scholar
  18. 18.
    Gross, J.J.: Emotion regulation in adulthood: timing is everything. Curr. Dir. Psychol. Sci. 10(6), 214–219 (2001)CrossRefGoogle Scholar
  19. 19.
    Gross, J.J., Richards, J.M., John, O.P.: Emotion regulation in everyday life. In: Snyder, D.K., Simpson, J.A., Hughes, J.N. (eds.) Emotion Regulation in Couples and Families: Pathways to Dysfunction and Health, pp. 13–35. American Psychological Association, Washington DC (2006)Google Scholar
  20. 20.
    Gross, J.J. (ed.): Handbook of Emotion Regulation. The Guilford Press, New York (2007)Google Scholar
  21. 21.
    Gross, J.J., Thompson, R.A.: Emotion regulation: conceptual foundations. In: Gross, J.J. (ed.) Handbook of Emotion Regulation, pp. 3–24. The Guilford Press, New York (2007)Google Scholar
  22. 22.
    Hoorn, J.F., Pontier, M., Siddiqui, G.F.: When the user is instrumental to robot goals. First try: agent uses agent. In: Proceedings of IEEE/WIC/ACM Web Intelligence and Intelligent Agent Technology WI-IAT 2008, vol. 2, pp. 296–301 (2008)Google Scholar
  23. 23.
    Hoorn, J.F., Pontier, M., Siddiqui, G.F.: Coppélius’ concoction: similarity and complementarity among three affect-related agent models. Cogn. Syst. Res. 15–16, 33–49 (2012)CrossRefGoogle Scholar
  24. 24.
    Hudlicka, E., Lisetti, C., Hodge, D., Paiva, A., Rizzo, A., Wagner, E.: Panel on artificial agents for psychotherapy. In: Proceedings of AAAI Spring Symposium: Emotion, Personality, and Social Behavior’08, pp. 60–64 (2008)Google Scholar
  25. 25.
    John, O.P., Gross, J.J.: Individual differences in emotion regulation. In: Gross, J.J. (ed.) Handbook of Emotion Regulation, pp. 351–372. The Guilford Press, New York (2007)Google Scholar
  26. 26.
    Kroenke, K., Spitzer, L., Williams, J.: The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16(9), 606–613 (2001)CrossRefGoogle Scholar
  27. 27.
    Marsella, S., Gratch, J.: EMA: a model of emotional dynamics. Cogn. Syst. Res. 10(1), 70–90 (2009)CrossRefGoogle Scholar
  28. 28.
    Marsella, S., Gratch, J.: Modeling coping behavior in virtual humans don’t worry, be happy. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems - AAMAS’03 (2003)Google Scholar
  29. 29.
    Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. In: Scherer, K.R., Bänziger, T., Roesch, E.B. (eds.) Blueprint for Affective Computing: A Sourcebook, Chap. 1.2, pp. 21–46. Oxford University Press, Oxford (2010)Google Scholar
  30. 30.
    Moullec, G., Maïano, C., Morin, A.J.S., Monthuy-Blanc, J., Rosello, L., Ninot, G.: A very short visual analog form of the Center for Epidemiologic Studies Depression Scale (CES-D) for the idiographic measurement of depression. J. Affect. Disord. 128(3), 220–234 (2010)CrossRefGoogle Scholar
  31. 31.
    Ortony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  32. 32.
    Picard, R.: Affective Computing. MIT Press, Cambridge (1997)Google Scholar
  33. 33.
    Preece, J., Rogers, Y., Sharp, H.: Interaction Design: Beyond Human-Computer Interaction. Wiley, New York (2002)Google Scholar
  34. 34.
    Prendinger, H., Ishizuka, M.: The empathic companion: a character-based interface that addresses users’ affective states. Appl. Artif. Intell. 19, 267–285 (2005)CrossRefGoogle Scholar
  35. 35.
    Rogers, C.: Your body language speaks loudly: nonverbal communication makes patient more comfortable. In: Academy News of The American Academy of Orthopaedic Surgeons. http://www2.aaos.org/acadnews/2002news/b16-7.htm
  36. 36.
    Rogers, C.R.: On Becoming a Person: a therapist’s view of psychotherapy. Constable and Company, London (1967)Google Scholar
  37. 37.
    Soleimani, A., Kobti, Z.: A mood driven computational model for gross emotion regulation paradigm. In: Proceedings of the 5th International C* Conference on Computer Science and Software Engineering, pp. 9–17. ACM, New York (2012)Google Scholar
  38. 38.
    Thwaites, R., Bennett-Levy, J.: Conceptualizing empathy in cognitive behaviour therapy: making the implicit explicit. Behav. Cogn. Psychother. 35, 291–612 (2007)CrossRefGoogle Scholar
  39. 39.
    Vanaerschot, G.: The process of empathy: Holding and letting go. In: Liataer, G., Rombauts, J., Van Balen, R. (eds.) Client-Centered and Experiential Psychotherapy in the Nineties, pp. 269–293. Leuven University Press, Leuven (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Juan Martínez-Miranda
    • 1
  • Adrián Bresó
    • 1
  • Juan Miguel García-Gómez
    • 1
  1. 1.ITACA Institute, Biomedical Informatics GroupUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations