BSG-Starcraft Radius Improvements of Particle Swarm Optimization Algorithm: An Application to Ceramic Matrix Composites

  • Dominique Chamoret
  • Sébastien Salmon
  • Noelie Di Cesare
  • Yingjie J. Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8472)


The thermal residual stresses (TRS) induced in ceramic matrix composites (CMCs) with multi-layered interphases when cooling down from the processing temperature, have a significant influence on the mechanical behavior and lifetime of CMCs. The objective of this work is to minimize the TRS of the unidirectional CMCs with multi-layered interphases by controlling the interphases thicknesses. A new Particle Swarm Optimization (PSO) algorithm is interfaced with a finite element code to find an optimal design and thereby significantly reduce the TRS within CMCs. This new PSO allows a faster convergence rate and gets a new effective stopping criteria based on real physical limits.


Ceramic matrix composites Thermal residual stresses Particle Swarm Optimization Radius improvement The BSG-Starcraft improvement Microstructure modelling Finite element analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimisation. In: Proceedings of the IEEE International Conference on Neural Networks (1995)Google Scholar
  2. 2.
    Droillard, C., Lamom, J., Bourrat, X.: Strong interface in cmcs, a condition for efficient multilayered interphases. Materials Research Society Symposium Proceedings 365, 371–376 (1995)CrossRefGoogle Scholar
  3. 3.
    Droillard, C., Lamon, J.: Fracture toughness of 2-d woven sic/sic cvi-composites with multilayered interphases. Journal of the American Ceramic Society 79(4), 849–858 (1996)CrossRefGoogle Scholar
  4. 4.
    Xu, Y., Zhang, W., Chamoret, D., Domaszewski, M.: Minimizing thermal residual stresses in c/sic functionally graded material coating of c/c composites by using particle swarm optimization algorithm. Computational Materials Science 61, 99–105 (2012)CrossRefGoogle Scholar
  5. 5.
    Salmon, S.: Caractérisation, identification et optimisation des systèmes mécaniques complexes par mise en œuvre de simulateurs hybrides matériels-logiciels. PhD thesis, Université de Technologie de Belfort Montbéliard (2012)Google Scholar
  6. 6.
    Salmon, S.: Particle Swarm Optimization in Scilab ver 0.1-7 - Performance evaluations (2011)Google Scholar
  7. 7.
    Janson, S., Middendorf, M.: On trajectories of particles in pso. In: Proceedings of the 2007 IEEE Swarm Intelligence Symposium (2007)Google Scholar
  8. 8.
    van den Bergh, F., Engelbrecht, A.: A study of particle swarm optimization particle trajectories. Information Sciences 176(8), 937–971 (2006)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cristian, I.: Trelea: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998, IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)Google Scholar
  11. 11.
    Bertrand, S., Pailler, R., Bourrat, X., Naslai, R.: Tem structure of (pyc/sic)n multilayered interphases in sic/sic composites. Journal of the European Ceramic Society 20, 1–13 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dominique Chamoret
    • 1
  • Sébastien Salmon
    • 2
  • Noelie Di Cesare
    • 1
  • Yingjie J. Xu
    • 3
  1. 1.IRTES-M3M-EA7274Université de Technologie de Belfort MontbéliardBelfortFrance
  2. 2.Optimization Command and Control SystemsBesançonFrance
  3. 3.Engineering Simulation and Aerospace Computing, Key Laboratory of Contemporary Design and Integrated Manufacturing TechnologyNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations