Advertisement

An Insight into Information, Entanglement and Time

  • Paul L. BorrillEmail author
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

We combine elements of Boltzmann’s statistical account of thermodynamic processes in the second law, Poynting’s twist waves on a photon shaft and Shannon’s theory of communication within a background-free conceptualization of time; where the departure and arrival of information carried by photons bounds “elements of physical reality” as perpetually reversible photon links embedded in an entangled network. Entangled networks become progressively irreversible as decoherence ebbs and flows with the environment. From this, we can begin to formulate a new and logically consistent view of the apparent non-locality revealed in violations of Bell’s inequality.

Keywords

Virtual Machine Minkowski Spacetime Bipartite Entanglement Entangle System Indefinite Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

These ideas were inspired by the writings and conversations with Lee Smolin, Julian Barbour, Fotini Markopoulou, Simone Severini and Anton Zeilinger. They may not agree with anything I have said, but I owe my inspiration to the questions they asked. All responsibility for errors and inaccuracies is mine.

References

  1. 1.
    C. Teuscher (ed.), Alan Turing: Life and Legacy of a Great Thinker (Springer, New York, 2004)Google Scholar
  2. 2.
    J. Barbour, The End of Time: The Next Revolution in Physics (Oxford University Press, 2001)Google Scholar
  3. 3.
    A. Peres, “Einstein, Podolsky, Rosen, and Shannon”, Technion-Israel Institute of Technology, October 2003. arXiv e-print arXiv:quant-ph/0310010
  4. 4.
    A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefADSzbMATHGoogle Scholar
  5. 5.
    L. Smolin, “The case for background independence”, Perimeter Institute, July 2005. arXiv e-print arXiv:hep-th/0507235
  6. 6.
    S. French, D. Krause, Identity in Physics: A Historical, Philosophical, and Formal Analysis (Oxford University Press, New York, 2006)CrossRefGoogle Scholar
  7. 7.
    J.H. Poynting, The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. Ser. A 82, 560–567 (1909)CrossRefADSzbMATHGoogle Scholar
  8. 8.
    A. Shimony, Aspects of nonlocality in quantum mechanics, in Quantum Mechanics at the Crossroads New Perspectives from History, Philosophy and Physics, ed. by J. Evans, A.S. Thorndike (Springer, Berlin, 2010)Google Scholar
  9. 9.
    D. Hestenes, “Electron time, mass and Zitter”, technical report, FQXi Community (2008)Google Scholar
  10. 10.
    C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 5(1), 55 (1948)Google Scholar
  11. 11.
    R. Fickler, R. Lapkiewicz, W.N. Plick, M. Krenn, C. Schaeff, S. Ramelow, A. Zeilinger, Quantum entanglement of very high angular momenta. Science 338, 640–643 (2012). University of Vienna, July 2012. arXiv e-print arXiv:1207.2376 CrossRefADSGoogle Scholar
  12. 12.
    J.P. Torres, L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley, Weinheim, 2011)CrossRefGoogle Scholar
  13. 13.
    A. Afanasev, C.E. Carlson, A. Mukherjee, Excitation of an atom by twisted photons, George Washington University, March 2013. arXiv e-print arXiv:1304.0115 [quant-ph]
  14. 14.
    J. Bahrdt, K. Holldack, P. Kuske, R. Mller, M. Scheer, P. Schmid, First observation of photons carrying orbital angular momentum in undulator radiation. Phys. Rev. Lett. 111, 034801 (2013)CrossRefADSGoogle Scholar
  15. 15.
    U. Coope, Time for Aristotle (Oxford University Press, Oxford, 2005)CrossRefGoogle Scholar
  16. 16.
    R.P. Feynman, A. Zee, QED: The Strange Theory of Light and Matter (Princeton University Press, Princeton, 2006)Google Scholar
  17. 17.
    J.H. Poynting, On the transfer of energy in the electromagnetic field. Philos. Trans. R. Soc. Lond. 175, 343–361 (1884)CrossRefzbMATHGoogle Scholar
  18. 18.
    D. Gentner, M. Imai, L. Boroditsky, As time goes by: evidence for two systems in processing space time metaphors. Lang. Cognit. Process. 17(5), 537565 (2002)CrossRefGoogle Scholar
  19. 19.
    L. Maccone, Quantum solution to the arrow-of-time dilemma. Phys. Rev. Lett. 103(8), 080401 (2009)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    A. Peres, Quantum nonlocality and inseparability, in New Developments on Fundamental Problems in Quantum Physics, ed. by M. Ferrero, A. van der Merwe (Kluwer, Dordrecht, 1997), pp. 301–310. arXiv e-print arXiv:quant-ph/9609016, Technion-Israel Institute of Technology, September 1996
  21. 21.
    A. Aspect, J. Dalibard, G. Roger, Experimental test of bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    C.H. Bennett, R. Landauer, The fundamental physical limits of computation. Sci. Am. 253(1), 48–56 (1985)CrossRefADSGoogle Scholar
  23. 23.
    A. Aspect, Bell’s inequality test: more ideal than ever. Nature 398(6724), 189–189 (1999)CrossRefADSGoogle Scholar
  24. 24.
    C.H. Bennett, Notes on Landauer’s principle, reversible computation and Maxwell’s demon. Stud. Hist. Philos. Mod. Phys. 34, 501–510 (2003). arXiv:physics/0210005, October 2002CrossRefzbMATHGoogle Scholar
  25. 25.
    A. Einstein, On the electrodynamics of moving bodies (zur elektrodynamik bewegter korper). Annalen der Physik XVII, 891–921 (1905)CrossRefADSGoogle Scholar
  26. 26.
    J. Barbour, The nature of time, technical report, FQXi Community, Mar (2009)Google Scholar
  27. 27.
    E. Megidish, A. Halevy, T. Shacham, T. Dvir, L. Dovrat, H.S. Eisenberg, Entanglement swapping between photons that have never coexisted. Phys. Rev. Lett. 110, 210403 (2013)CrossRefADSGoogle Scholar
  28. 28.
    D. Deutsch, The Fabric of Reality: The Science of Parallel Universes- and Its Implications (Penguin Books, New York, 1998)Google Scholar
  29. 29.
    W. Vinci, T. Albash, A. Mishra, P.A. Warburton, D.A. Lidar, “Distinguishing classical and quantum models for the d-wave device”. arXiv:1403.4228 [quant-ph] March 2014
  30. 30.
    J.A. Wheeler, R.P. Feynman, Interaction with the absorber as the mechanism of radiation. Rev. Mod. Phys. 17, 157–181 (1945)CrossRefADSGoogle Scholar
  31. 31.
    M. Ekaterina, G. Brida, M. Gramegna, V. Giovannetti, L. Maccone, M. Genovese. “Time from Quantum Entanglement: An Experimental Illustration.” Phys. Rev. A 89(5), (2014). arxiv.org/abs/1310.4691, October 2013

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Earth Computing, Inc.Palo AltoUSA

Personalised recommendations