Advertisement

Information and the Foundations of Quantum Theory

  • Angelo Bassi
  • Saikat Ghosh
  • Tejinder Singh
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

We believe that the hypothesis ‘it from bit’ originates from the assumption that probabilities have a fundamental, irremovable status in quantum theory. We argue against this assumption and highlight four well-known reformulations/modifications of the theory in which probabilities and the measuring apparatus do not play a fundamental role. These are: Bohmian Mechanics, Dynamical Collapse Models, Trace Dynamics, and Quantum Theory without Classical Time. Here the ‘it’ is primary and the ‘bit’ is derived from the ‘it’.

Keywords

Wave Function Quantum Theory Coarse Graining Bohmian Mechanics Copenhagen Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Bohm, Phys. Rev. 85, 166 (1952)CrossRefADSzbMATHGoogle Scholar
  2. 2.
    D. Bohm, Phys. Rev. 85, 180 (1952)CrossRefADSGoogle Scholar
  3. 3.
    J. Bub, Interpreting the Quantum World (Cambridge University Press, Cambridge, 1997)zbMATHGoogle Scholar
  4. 4.
    D. Dürr, S. Teufel, Bohmian Mechanics (Springer, Heidelberg, 2009)zbMATHGoogle Scholar
  5. 5.
    P.R. Holland, The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics (Cambridge University Press, Cambridge, 1993)CrossRefGoogle Scholar
  6. 6.
    P. Pearle, Phys. Rev. D 13, 857 (1976)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    L. Diósi, Phys. Rev. A 40, 1165 (1989)CrossRefADSGoogle Scholar
  8. 8.
    G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)CrossRefADSzbMATHMathSciNetGoogle Scholar
  9. 9.
    N. Gisin, J. Phys. A 14, 2259 (1981)CrossRefADSzbMATHMathSciNetGoogle Scholar
  10. 10.
    G.C. Ghirardi, P. Pearle, A. Rimini, Phys. Rev. A 42, 78 (1990)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A. Bassi, G.C. Ghirardi, Phys. Rep. 379, 257 (2003)CrossRefADSzbMATHMathSciNetGoogle Scholar
  12. 12.
    A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)CrossRefADSGoogle Scholar
  13. 13.
    S.L. Adler, Nucl. Phys. B 415, 195 (1994)CrossRefADSzbMATHGoogle Scholar
  14. 14.
    S.L. Adler, Quantum Theory as an Emergent Phenomenon (Cambridge University Press, Cambridge, 2004), p. xii+225CrossRefGoogle Scholar
  15. 15.
    S.L. Adler, J. Phys. A 39, 1397 (2006)CrossRefADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    S.L. Adler, A.C. Millard, Nucl. Phys. B 473, 199 (1996)CrossRefADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    K. Lochan, T.P. Singh, Phys. Lett. A 375, 3747 (2011)CrossRefADSzbMATHMathSciNetGoogle Scholar
  18. 18.
    K. Lochan, S. Satin, T.P. Singh, Found. Phys. 42, 1556 (2012)CrossRefADSzbMATHMathSciNetGoogle Scholar
  19. 19.
    T.P. Singh, in The Forgotten Present(in press), ed. by T. Filk, A. von Muller (Springer, Berlin, 2013). arXiv:1210.8110
  20. 20.
    S. L. Adler (2013) arXiv:1306.0482

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TriesteTriesteItaly
  2. 2.Department of PhysicsIndian Institute of Technology KanpurKanpurIndia
  3. 3.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations