Spacetime Weave—Bit as the Connection Between Its or the Informational Content of Spacetime

  • Torsten Asselmeyer-MalugaEmail author
Part of the The Frontiers Collection book series (FRONTCOLL)


In this essay I will discuss the relation between information and spacetime. First I demonstrate that because of diffeomorphism invariance a smooth spacetime contains only a discrete amount of information. Then I directly identify the spacetime as carrier of the Bit, and derive the matter (as It) from the spacetime to get a direct identification of Bit and It. But the picture is stationary up to now. Adding the dynamics is identical to introducing a time coordinate. Next I show that there are two ways to introduce time, the global time leading to quantum objects or the local time leading to a branched structure for the future (tree of the Casson handle). This model would have a tremendous impact on the measurement process. I discuss a model for the measurement of a quantum object with an explicit state reduction (collapse of the wave function) caused by gravitational interaction. Finally I discuss also quantum fluctuations on geometrical grounds. Dedicated to the memory of C.F. von Weizsäcker.


Black Hole Saddle Point Fundamental Group Quantum Fluctuation Quantum Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Asselmeyer-Maluga, A chicken-and-egg problem: which came first, the quantum state or spacetime? See (2012). (Fourth Prize of the FQXi Essay contest “Questioning the Foundations” (see
  2. 2.
    T. Asselmeyer-Maluga, J. Król, Abelian Gerbes, generalized geometries and exotic \(R^4\). submitted to J. Math. Phys. (2009). arXiv:0904.1276
  3. 3.
    T. Asselmeyer-Maluga, J. Król, Topological quantum d-branes and wild embeddings from exotic smooth \(R^4\). Int. J. Mod. Phys. A 26: 3421–3437 (2011). arXiv:1105.1557
  4. 4.
    T. Asselmeyer-Maluga, J. Król, Decoherence in quantum cosmology and the cosmological constant. Mod. Phys. Lett. A 28: 1350158 (2013). doi: 10.1142/S0217732313501587, arXiv:1309.7206
  5. 5.
    T. Asselmeyer-Maluga, J. Król, Higgs potential and confinement in Yang-Mills theory on exotic \(R^4\) (2013). arXiv:1303.1632
  6. 6.
    T. Asselmeyer-Maluga, J. Król, Quantum geometry and wild embeddings as quantum states. Int. J. Geom. Methods in Mod. Phys. 10(10) (2013) will be published in November 2013. arXiv:1211.3012
  7. 7.
    T. Asselmeyer-Maluga, J. Król, Inflation and topological phase transition driven by exotic smoothness. Adv. HEP, 2014: 867460 (article ID) (2014)., arXiv:1401.4815
  8. 8.
    T. Asselmeyer-Maluga, H. Rosé, On the geometrization of matter by exotic smoothness. Gen. Rel. Grav. 44, 2825–2856 (2012). doi: 10.1007/s10714-012-1419-3, arXiv:1006.2230
  9. 9.
    J. Barbour, B. Bertotti, Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A 382: 295–306 (1982)Google Scholar
  10. 10.
    A.N. Bernal, M. Sánchez, On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243: 461–470 (2003). arXiv:gr-qc/0306108
  11. 11.
    A.N. Bernal, M. Saánchez, Globally hyperbolic spacetimes can be defined as “causal” instead of “strongly causal”. Class. Quant. Gravity, 24:745–750 (2007). arXiv:gr-qc/0611138
  12. 12.
    S.O. Bilson-Thompson, A topological model of composite preons (2005) arXiv:hep-ph/0503213v2
  13. 13.
    S.O. Bilson-Thompson, F. Markopoulou, L. Smolin, Quantum gravity and the standard model. Class. Quant. Gravity 24, 3975–3994 (2007). arXiv:hep-th/0603022v2
  14. 14.
    A. Casson, Three lectures on new infinite constructions in 4-dimensional manifolds, vol 62. (Birkhäuser, progress in mathematics edition, 1986. Notes by Lucian Guillou, first published 1973)Google Scholar
  15. 15.
    M.H. Freedman, A fake \(S^3\times R\). Ann. Math. 110, 177–201 (1979)CrossRefzbMATHGoogle Scholar
  16. 16.
    R. Fintushel, R. Stern, Knots, links, and 4-manifolds. Inv. Math. 134: 363–400 (1998). (dg-ga/9612014)Google Scholar
  17. 17.
    H. Gomes, T. Koslowski, The link between general relativity and shape dynamics. Class. Quant. Gravity 29, 075009 (2012). arXiv:1101.5974
  18. 18.
    A. Markov, Unsolvability of certain problems in topology. Dokl. Akad. Nauk SSSR 123, 978–980 (1958)zbMATHMathSciNetGoogle Scholar
  19. 19.
    C.F. Von Weizsäcker, The unity of nature. Farrar, Straus, and Giroux, New York, 1980. Most books like: Aufbau der Physik (1985) or Zeit und Wissen (1992) in GermanGoogle Scholar
  20. 20.
    J.A. Wheeler, Hermann Weyl and the unity of knowledge. Am. Sci. 74, 366–375 (1986)ADSGoogle Scholar
  21. 21.
    J.A. Wheeler, Information, physics, quantum: The search for links. Complexity, Entropy, and the Physics of Information. In: W. Zurek, ed, Addison-Wesley (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.German Aerospace CenterBerlinGermany

Personalised recommendations