Advertisement

Self-similarity, Conservation of Entropy/bits and the Black Hole Information Puzzle

  • Douglas SingletonEmail author
  • Elias C. Vagenas
  • Tao Zhu
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

John Wheeler coined the phrase “it from bit” or “bit from it” in the 1980s. However, much of the interest in the connection between information, i.e. “bits”, and physical objects, i.e. “its”, stems from the discovery that black holes have characteristics of thermodynamic systems having entropies and temperatures. This insight led to the information loss problem—what happens to the “bits” when the black hole has evaporated away due to the energy loss from Hawking radiation? In this essay we speculate on a radical answer to this question using the assumption of self-similarity of quantum correction to the gravitational action and the requirement that the quantum corrected entropy be well behaved in the limit when the black hole mass goes to zero.

Keywords

Black Hole Quantum Gravity Quantum Correction Black Hole Entropy Black Hole Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

There are two works—one on self-similarity [20] and one on the peculiar relationship between long distance/IR scales and short distance/UV scales in quantum gravity [21]—which helped inspire parts of this work.

References

  1. 1.
    L. Susskind, J. Lindesay, Black Hole, An Introduction To Black Holes, Information And The String Theory Revolution: The Holographic Universe (World Scientific Publishing Co. Pte. Ltd., Danvers, 2005)Google Scholar
  2. 2.
    M.K. Parikh, F. Wilczek, Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000) [hep-th/9907001]Google Scholar
  3. 3.
    K. Srinivasan, T. Padmanabhan, Particle production and complex path analysis. Phys. Rev. D 60, 024007 (1999) [gr-qc/9812028]Google Scholar
  4. 4.
    J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333 (1973)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    H. Von Koch, On a continuous curve without tangents constructible from elementary geometry, in Classics on Fractals, ed. by G. Edgar (Addison-Wesley, Reading, 1993), pp. 25–45Google Scholar
  6. 6.
    D. Singleton, E.C. Vagenas, T. Zhu, Insights and possible resolution to the information loss paradox via the tunneling picture. JHEP 1008, 089 (2010) [Erratum-ibid. 1101, 021 (2011)] arXiv:1005.3778 [gr-qc]
  7. 7.
    S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)]Google Scholar
  8. 8.
    L. Xiang, A note on the black hole remnant. Phys. Lett. B 647, 207 (2007) [gr-qc/0611028]Google Scholar
  9. 9.
    M.K. Parikh, Energy conservation and Hawking radiation. arXiv:hep-th/0402166
  10. 10.
    M. Arzano, A.J.M. Medved, E.C. Vagenas, Hawking radiation as tunneling through the quantum horizon. JHEP 0509, 037 (2005) [hep-th/0505266]Google Scholar
  11. 11.
    S.K. Modak, Corrected entropy of BTZ black hole in tunneling approach. Phys. Lett. B 671, 167 (2009). arXiv:0807.0959 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    T. Zhu, J.R. Ren, M.F. Li, Corrected entropy of Friedmann-Robertson-Walker universe in tunneling method. JCAP 0908, 010 (2009). arXiv:0905.1838 [hep-th]CrossRefADSGoogle Scholar
  13. 13.
    T. Zhu, J.R. Ren, M.F. Li, Corrected entropy of high dimensional black holes. arXiv:0906.4194 [hep-th]
  14. 14.
    B. Zwiebach, A First Course in String Theory (Cambridge University Press, New York, 2004), p. 221CrossRefzbMATHGoogle Scholar
  15. 15.
    K.A. Meissner, Black hole entropy in loop quantum gravity. Class. Quant. Gravity 21, 5245 (2004) [gr-qc/0407052]Google Scholar
  16. 16.
    G.W. Gibbons, S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    B. Zhang, Q.Y. Cai, L. You, M.S. Zhan, Hidden messenger revealed in hawking radiation: a resolution to the paradox of black hole information loss. Phys. Lett. B 675, 98 (2009). arXiv:0903.0893 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    B. Zhang, Q.Y. Cai, M.S. Zhan, L. You, Entropy is conserved in hawking radiation as tunneling: a revisit of the black hole information loss paradox. Ann. Phys. 326, 350 (2011). arXiv:0906.5033 [hep-th]CrossRefADSzbMATHMathSciNetGoogle Scholar
  19. 19.
    Y.X. Chen, K.N. Shao, Information loss and entropy conservation in quantum corrected Hawking radiation. Phys. Lett. B 678, 131 (2009). arXiv:0905.0948 [hep-th]CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    P. Nicolini, B. Niedner, Hausdorff dimension of a particle path in a quantum manifold. Phys. Rev. D 83, 024017 (2011). arXiv:1009.3267 [gr-qc]CrossRefADSGoogle Scholar
  21. 21.
    E. Spallucci, S. Ansoldi, Regular black holes in UV self-complete quantum gravity. Phys. Lett. B 701, 471 (2011). arXiv:1101.2760 [hep-th]CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Douglas Singleton
    • 1
    • 2
    Email author
  • Elias C. Vagenas
    • 3
  • Tao Zhu
    • 4
    • 5
  1. 1.Department of PhysicsCalifornia State University FresnoFresnoUSA
  2. 2.Department of PhysicsInstitut Teknologi BandungBandungIndonesia
  3. 3.Theoretical Physics Group, Department of PhysicsKuwait UniversitySafatKuwait
  4. 4.GCAP-CASPER, Physics DepartmentBaylor UniversityWacoUSA
  5. 5.Institute for Advanced Physics and MathematicsZhejiang University of TechnologyHangzhouChina

Personalised recommendations