Computational Image-Guided Technologies in Cranio-Maxillofacial Soft Tissue Planning and Simulation

Abstract

Due to the complexity and unpredictability of cranio-maxillofacial (CMF) surgery, computer simulations have been proposed to assist the surgeon in the decision-making process of surgical planning. Current planning solutions require the use of different and unconnected tools to account for the necessary balance and interplay between functional and aesthetic aspects of CMF surgery, which ultimately makes an effective combination and analysis of the information difficult. In this article we present current approaches and new trends suggested to alleviate these issues and to promote the development of clinically relevant and seamless, yet effective, computational solutions for CMF surgical planning.

Keywords

Neurosurgical procedures Computer assisted systems Preoperative planning Intraoperative navigation Charge coupled device Dynamic reference frame 

References

  1. 1.
    Juergens P, Ratia J, Beinemann J, Krol Z, Schicho K, Kunz C, Zeilhofer H-F, Zimmerer S. Enabling an unimpeded surgical approach to the skull base in patients with cranial hyperostosis, exemplarily demonstrated for craniometaphyseal dysplasia. J Neurosurg. 2011;115(3):528–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Juergens P, Beinemann J, Zandbergen M, Raith S, Kunz C, Zeilhofer H-F. A computer-assisted diagnostic and treatment concept to increase accuracy and safety in the extracranial correction of cranial vault asymmetries. J Oral Maxillofac Surg. 2012;70(3):677–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Juergens P, Klug C, Krol Z, Beinemann J, Kim H, Reyes M, Guevara-Rojas G, Zeilhofer H-F, Ewers R, Schicho K. Navigation-guided harvesting of autologous iliac crest graft for mandibular reconstruction. J Oral Maxillofac Surg. 2011;69(11):2915–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Juergens P, Krol Z, Zeilhofer H-F, Beinemann J, Schicho K, Ewers R, Klug C. Computer simulation and rapid prototyping for the reconstruction of the mandible. J Oral Maxillofac Surg. 2009;67(10):2167–70.CrossRefPubMedGoogle Scholar
  5. 5.
    Wittwer G, Adeyemo WL, Beinemann J, Juergens P. Evaluation of risk of injury to the inferior alveolar nerve with classical sagittal split osteotomy technique and proposed alternative surgical techniques using computer-assisted surgery. Int J Oral Maxillofac Surg. 2012;41(1):79–86.CrossRefPubMedGoogle Scholar
  6. 6.
    Gateno J, Xia JJ, Teichgraeber JF. New 3-dimensional cephalometric analysis for orthognathic surgery. J Oral Maxillofac Surg. 2011;69(3):606–22.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Kim B-R, Oh K-M, Cevidanes LHS, Park J-E, Sim H-S, Seo S-K, Reyes M, Kim Y-J, Park Y-H. Analysis of 3D soft tissue changes after 1- and 2-jaw orthognathic surgery in mandibular prognathism patients. J Oral Maxillofac Surg. 2013;71(1):151–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Ryckman MS, Harrison S, Oliver D, Sander C, Boryor AA, Hohmann AA, Kilic F, Kim KB. Soft-tissue changes after maxillomandibular advancement surgery assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop. 2010;137(4 Suppl):S86–93.CrossRefPubMedGoogle Scholar
  9. 9.
    Altman JI, Oeltjen JC. Nasal deformities associated with orthognathic surgery: analysis, prevention, and correction. J Craniofac Surg. 2007;18(4):734–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Stella JP, Streater MR, Epker BN, Sinn DP. Predictability of upper lip soft tissue changes with maxillary advancement. J Oral Maxillofac Surg. 1989;47(7):697–703.CrossRefPubMedGoogle Scholar
  11. 11.
    Majeed T, Fundana K, Lüthi M, Beinemann J, Cattin P. A shape prior-based MRF model for 3D masseter muscle segmentation. In: SPIE image processing. San Diego: SPIE Digital Library; 2012. p. 83140O–83140O-7.Google Scholar
  12. 12.
    Majeed T, Fundana K, Luthi M, Kiriyanthan S, Beinemann J, Cattin PC. Using a flexibility constrained 3D statistical shape model for robust MRF-based segmentation. In: Mathematical methods in biomedical image analysis (MMBIA), 2012 IEEE workshop on, Breckenridge. 2012. p. 57–64.Google Scholar
  13. 13.
    Majeed T, Fundana K, Kiriyanthan S, Beinemann J, Cattin P. Graph cut segmentation using a constrained statistical model with non-linear and sparse shape optimization. In: Medical computer vision. Recognition techniques and applications in medical imaging. Berlin/Heidelberg: Springer; 2013. p. 48–58.Google Scholar
  14. 14.
    Boykov YY. Jolly M-P. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: Computer vision, 2001. ICCV 2001. Proceedings. Eighth IEEE international conference on. 2001, vol. 1. p. 105–12.Google Scholar
  15. 15.
    Rezaeitabar Y, Ulusoy I. Automatic 3D segmentation of individual facial muscles using unlabeled prior information. Int J Comput Assist Radiol Surg. 2012;7(1):35–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Ng HP, Ong SH, Hu Q, Foong KWC, Goh PS, Nowinski WL. Muscles of mastication model-based MR image segmentation. Int J Comput Assist Radiol Surg. 2006;1(3):137–48.CrossRefGoogle Scholar
  17. 17.
    Ng HP, Ong SH, Huang S, Liu J, Foong KWC, Goh PS, Nowinski WL. Salient features useful for the accurate segmentation of masticatory muscles from minimum slices subsets of magnetic resonance images. Mach Vis Appl. 2010;21(4):449–67.CrossRefGoogle Scholar
  18. 18.
    Ng HP, Ong SH, Liu J, Huang S, Foong KWC, Goh PS, Nowinski WL. 3D segmentation and quantification of a masticatory muscle from MR data using patient-specific models and matching distributions. J Digit Imaging. 2009;22(5):449–62.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kale EH, Mumcuoglu EU, Hamcan S. Automatic segmentation of human facial tissue by MRI-CT fusion: a feasibility study. Comput Methods Programs Biomed. 2012;108(3):1106–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Terzopoulos D, Waters K. Physically-based facial modelling, analysis, and animation. J Vis Comput Animat. 1990;1(2):73–80.CrossRefGoogle Scholar
  21. 21.
    Lee Y, Terzopoulos D, Waters K. Realistic modeling for facial animation. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques. New York; 1995. p. 55–62.Google Scholar
  22. 22.
    Keeve E, Girod S, Kikinis R, Girod B. Deformable modeling of facial tissue for craniofacial surgery simulation. Comput Aided Surg. 1998;3(5):228–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Zachow S, Gladiline E, Hege H, Deuflhard P. Finite-element simulation of soft tissue deformation. Proc CARS. 2000;28:23–8.Google Scholar
  24. 24.
    Koch RM, Gross MH, Carls FR, von Büren DF, Fankhauser G, Parish YIH. Simulating facial surgery using finite element models. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, New Orleans. 1996. p. 421–8.Google Scholar
  25. 25.
    Zachow S, Hege H-C, Deuflhard P. Computer assisted planning in cranio-maxillofacial surgery. J Comput Inf Technol. 2006;14(1):53–64.Google Scholar
  26. 26.
    Gladilin E, Ivanov A, Roginsky V. Generic approach for biomechanical simulation of typical boundary value problems in cranio-maxillofacial surgery planning. Med Image Comput Comput Interv 2004. 2004;147(2):380–8.Google Scholar
  27. 27.
    Wang S, Yang J. Simulating cranio-maxillofacial surgery based on mixed-element biomechanical modelling. Comput Methods Biomech Biomed Engin. 2010;13(3):419–29.CrossRefPubMedGoogle Scholar
  28. 28.
    Gladilin E, Ivanov A. Computational modelling and optimisation of soft tissue outcome in cranio-maxillofacial surgery planning. Comput Methods Biomech Biomed Engin. 2009;12(3):305–18.CrossRefPubMedGoogle Scholar
  29. 29.
    Cotin S, Delingette H, Ayache N. A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training. Vis Comput. 2000;16:437–52.CrossRefGoogle Scholar
  30. 30.
    Picinbono G. Non-linear anisotropic elasticity for real-time surgery simulation. Graph Models. 2003;65(5):305–21.CrossRefGoogle Scholar
  31. 31.
    Chabanas M, Luboz V, Payan Y. Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery. Med Image Anal. 2003;7(2):131–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Mollemans W, Schutyser F, Nadjmi N, Maes F, Suetens P. Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation. Med Image Anal. 2007;11(3):282–301.CrossRefPubMedGoogle Scholar
  33. 33.
    Courtecuisse H, Allard J, Kerfriden P, Bordas SPA, Cotin S, Duriez C. Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal. 2014;18(2):394–410.CrossRefPubMedGoogle Scholar
  34. 34.
    Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I, Cotin S. SOFA: a multi-model framework for interactive physical simulation. In: Payan Y, editor. Soft tissue biomechanical modeling for computer assisted surgery SE – 125, vol. 11. Berlin/Heidelberg: Springer; 2012. p. 283–321.CrossRefGoogle Scholar
  35. 35.
    Taylor ZA, Cheng M, Ourselin S. High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging. 2008;27(5):650–63.CrossRefPubMedGoogle Scholar
  36. 36.
    Faure X, Zara F, Jaillet F, Moreau J-M, et al. Implicit tensor-mass solver on the GPU. In: Proccedings of eurographics/ACM SIGGRAPH symposium on computer animation, Lausanne. 2012.Google Scholar
  37. 37.
    Nesme M, Payan Y, Faure F, et al. Efficient, physically plausible finite elements. In: Eurographics, Dublin. 2005.Google Scholar
  38. 38.
    Shafi MI, Ayoub A, Ju X, Khambay B. The accuracy of three-dimensional prediction planning for the surgical correction of facial deformities using Maxilim. Int J Oral Maxillofac Surg. 2013;42:801–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Kolokitha O-E, Chatzistavrou E. Factors influencing the accuracy of cephalometric prediction of soft tissue profile changes following orthognathic surgery. J Maxillofac Oral Surg. 2012;11(1):82–90.PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Aboul-Hosn Centenero S, Hernández-Alfaro F. 3D planning in orthognathic surgery: CAD/CAM surgical splints and prediction of the soft and hard tissues results – our experience in 16 cases. J Craniomaxillofac Surg. 2012;40(2):162–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Scolozzi P, Momjian A, Courvoisier D. Dentofacial deformities treated according to a dentoskeletal analysis based on the divine proportion: are the resulting faces de facto ‘divinely’ proportioned? J Craniofac Surg. 2011;22(1):147–50.CrossRefPubMedGoogle Scholar
  42. 42.
    Terzic A, Combescure C, Scolozzi P. Accuracy of computational soft tissue predictions in orthognathic surgery from three-dimensional photographs 6 months after completion of surgery: a preliminary study of 13 patients. Aesthetic Plast Surg. 2014;38(1):184–91.CrossRefPubMedGoogle Scholar
  43. 43.
    Kim H, Jürgens P, Cattin P, Weber S, Nolte L-P, Reyes M. Fast soft-tissue simulation method for cranio-maxillofacial surgery using facial muscle template models. In: 14th annual conference of the international society for computer aided surgery, Geneva, June 2010.Google Scholar
  44. 44.
    Kim H, Jurgens P, Nolte L-P, Weber S, Zeilhofer H-F, Reyes M. Anatomically considered, fast soft-tissue simulation for cranio-maxillofacial surgery. In: In proceedings of computer aided surgery around the Head, Paris; 2009.Google Scholar
  45. 45.
    Kim H, Jurgens P, Cattin P, Weber S, Nolte L-P, Reyes M. Patient-specific, fast soft-tissue simulation for cranio-maxillofacial surgery. In: 17th congress of the European society of biomechanics, Edinburgh, U.K. – Accepted for podium presentation; 2010.Google Scholar
  46. 46.
    Kim H, Jürgens P, Nolte L-P, Reyes M. Anatomically-driven soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model. Med Image Comput Comput Interv. 2010;13(Pt 1):61–8.Google Scholar
  47. 47.
    Kim H, Jürgens P, Weber S, Nolte L-P, Reyes M. A new soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model. Prog Biophys Mol Biol. 2010;103(2–3):284–91.CrossRefPubMedGoogle Scholar
  48. 48.
    Kim H, Jürgens P, Reyes M. Soft-tissue simulation for cranio-maxillofacial surgery: clinical needs and technical aspects. In: Patient-specific modeling in tomorrow’s …, no. October 2011, 2012. p. 413–40.Google Scholar
  49. 49.
    Kim H, Jürgens P, Weber S, Nolte L, Reyes M. A new soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model. Prog Biophys Mol Biol Spec Issue Soft Tissue Model. 2010;103(2–3):284–91.CrossRefGoogle Scholar
  50. 50.
    Botticelli S, Verna C, Cattaneo PM, Heidmann J, Melsen B. Two- versus three-dimensional imaging in subjects with unerupted maxillary canines. Eur J Orthod. 2011;33(4):344–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Franco AL, de Andrade MF, Segalla JCM, Gonçalves DA, Camparis CM. New approaches to dental occlusion: a literature update. Cranio. 2012;30(2):136–43.PubMedGoogle Scholar
  52. 52.
    Hassan B, Couto Souza P, Jacobs R, de Azambuja Berti S, van der Stelt P. Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clin Oral Investig. 2010;14(3):303–10.PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Varga E, Hammer B, Hardy BM, Kamer L. The accuracy of three-dimensional model generation. What makes it accurate to be used for surgical planning? Int J Oral Maxillofac Surg. 2013;42:1159–66.CrossRefPubMedGoogle Scholar
  54. 54.
    Cevidanes LHC, Tucker S, Styner M, Kim H, Chapuis J, Reyes M, Proffit W, Turvey T, Jaskolka M. Three-dimensional surgical simulation. Am J Orthod Dentofacial Orthop. 2010;138(3):361–71.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Swennen GRJ, Barth E-L, Eulzer C, Schutyser F. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull. Int J Oral Maxillofac Surg. 2007;36(2):146–52.CrossRefPubMedGoogle Scholar
  56. 56.
    Swennen GRJ, Mommaerts MY, Abeloos J, De Clercq C, Lamoral P, Neyt N, Casselman J, Schutyser F. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface. Int J Oral Maxillofac Surg. 2009;38(1):48–57. Churchill Livingstone.CrossRefPubMedGoogle Scholar
  57. 57.
    Dai J, Hu G, Wang X, Tang M, Dong Y, Yuan H, Xin P, Yang T, Shen SG. CBCT combining with plaster models: application in virtual three-dimensional subapical segmental osteotomy to obtain more precise occlusal splint. J Craniofac Surg. 2012;23(6):1759–62.CrossRefPubMedGoogle Scholar
  58. 58.
    Chang Y-B, Xia JJ, Gateno J, Xiong Z, Teichgraeber JF, Lasky RE, Zhou X. In vitro evaluation of new approach to digital dental model articulation. J Oral Maxillofac Surg. 2012;70(4):952–62.CrossRefPubMedGoogle Scholar
  59. 59.
    Chang Y-B, Xia JJ, Gateno J, Xiong Z, Zhou X, Wong STC. An automatic and robust algorithm of reestablishment of digital dental occlusion. IEEE Trans Med Imaging. 2010;29(9):1652–63.CrossRefPubMedGoogle Scholar
  60. 60.
    Nadjmi N, Mollemans W, Daelemans A, Van Hemelen G, Schutyser F, Bergé S. Virtual occlusion in planning orthognathic surgical procedures. Int J Oral Maxillofac Surg. 2010;39(5):457–62.CrossRefPubMedGoogle Scholar
  61. 61.
    Lee J-Y, Kim Y-I, Hwang D-S, Park S-B. Effect of maxillary setback movement on upper airway in patients with class III skeletal deformities: cone beam computed tomographic evaluation. J Craniofac Surg. 2013;24(2):387–91.CrossRefPubMedGoogle Scholar
  62. 62.
    Sahoo NK, Jayan B, Ramakrishna N, Chopra SS, Kochar G. Evaluation of upper airway dimensional changes and hyoid position following mandibular advancement in patients with skeletal class II malocclusion. J Craniofac Surg. 2012;23(6):e623–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Kim M-A, Kim B-R, Choi J-Y, Youn J-K, Kim Y-JR, Park Y-H. Three-dimensional changes of the hyoid bone and airway volumes related to its relationship with horizontal anatomic planes after bimaxillary surgery in skeletal class III patients. Angle Orthod. 2013;83:623–9.CrossRefPubMedGoogle Scholar
  64. 64.
    Kochel J, Meyer-Marcotty P, Sickel F, Lindorf H, Stellzig-Eisenhauer A. Short-term pharyngeal airway changes after mandibular advancement surgery in adult class II-patients-a three-dimensional retrospective study. J Orofac Orthop. 2013;74(2):137–52.CrossRefPubMedGoogle Scholar
  65. 65.
    de Souza Carvalho ACG, Magro Filho O, Garcia IR, Araujo PM, Nogueira RLM. Cephalometric and three-dimensional assessment of superior posterior airway space after maxillomandibular advancement. Int J Oral Maxillofac Surg. 2012;41(9):1102–11.CrossRefPubMedGoogle Scholar
  66. 66.
    Lee Y, Chun Y-S, Kang N, Kim M. Volumetric changes in the upper airway after bimaxillary surgery for skeletal class III malocclusions: a case series study using 3-dimensional cone-beam computed tomography. J Oral Maxillofac Surg. 2012;70(12):2867–75.CrossRefPubMedGoogle Scholar
  67. 67.
    Abramson Z, Susarla S, August M, Troulis M, Kaban L. Three-dimensional computed tomographic analysis of airway anatomy in patients with obstructive sleep apnea. J Oral Maxillofac Surg. 2010;68(2):354–62.CrossRefPubMedGoogle Scholar
  68. 68.
    Pereira-Filho VA, Castro-Silva LM, de Moraes M, Gabrielli MFR, Campos JADB, Juergens P. Cephalometric evaluation of pharyngeal airway space changes in class III patients undergoing orthognathic surgery. J Oral Maxillofac Surg. 2011;69(11):e409–15.CrossRefPubMedGoogle Scholar
  69. 69.
    Zinser MJ, Zachow S, Sailer HF. Bimaxillary ‘rotation advancement’ procedures in patients with obstructive sleep apnea: a 3-dimensional airway analysis of morphological changes. Int J Oral Maxillofac Surg. 2013;42(5):569–78.CrossRefPubMedGoogle Scholar
  70. 70.
    Aykac D, Hoggman EA, McLennan G, Reinhardt JM. Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging. 2003;22(8):940–50.CrossRefPubMedGoogle Scholar
  71. 71.
    Shi H, Scarfe W, Farman A. Upper airway segmentation and dimensions estimation from cone-beam CT image datasets. Int J Comput Assist Radiol Surg. 2006;1(3):177–86.CrossRefGoogle Scholar
  72. 72.
    Cheng I, Nilufar S, Flores-Mir C, Basu A. Airway segmentation and measurement in CT images. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:795–9.PubMedGoogle Scholar
  73. 73.
    Bianchi A, Muyldermans L, Di Martino M, Lancellotti L, Amadori S, Sarti A, Marchetti C. Facial soft tissue esthetic predictions: validation in craniomaxillofacial surgery with cone beam computed tomography data. J Oral Maxillofac Surg. 2010;68(7):1471–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Luthi M, Blanc R, Albrecht T, Gass T, Goksel O, Buchler P, Kistler M, Bousleiman H, Reyes M, Cattin PC, et al. Statismo-a framework for PCA based statistical models. Insight J. 2012;1:1–18.Google Scholar
  75. 75.
    Shahim K, Jürgens P, Cattin PC, Nolte L-P, Reyes M. Prediction of cranio-maxillofacial surgical planning using an inverse soft tissue modelling approach. Med Image Comput Comput Assist Interv. 2013;16(Pt 1):18–25.PubMedGoogle Scholar
  76. 76.
    Gerig T, Shahim K, Reyes M, Vetter T, Lüthi M. Spatially -varying registration using gaussian processes. In: Medical image computing and computer-assisted intervention-MICCAI 2014. Springer International Publishing Switzerland; 2014. p. 413–20.Google Scholar
  77. 77.
    Tanaka M, Dulikravich GS. Inverse problems in engineering mechanics. Amsterdam/Oxford: Elsevier; 1998.Google Scholar
  78. 78.
    Dennis BH, Dulikravich GS. A finite element formulation for the detection of boundary conditions in elasticity and heat conduction. In: Inverse problems in engineering mechanics. Amsterdam: Elsevier; 1998. p. 61.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mauricio Reyes
    • 1
  • Kamal Shahim
    • 1
  • Philipp Jürgens
    • 2
  1. 1.Institute for Surgical Technology and BiomechanicsUniversity of BernBernSwitzerland
  2. 2.Department of Cranio-Maxillofacial SurgeryUniversity Hospital BaselBaselSwitzerland

Personalised recommendations