Mechatronic Considerations for Actuation of Human Assistive Wearable Robotics: Robust Control of a Series Elastic Actuator

  • Kyoungchul Kong
  • Joonbum Bae
  • Masayoshi Tomizuka
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 106)

Abstract

To realize ideal force control of robots that interact with a human, a very precise actuating system with zero impedance is desired. For such applications, a rotary series elastic actuator (RSEA) has been introduced recently. This chapter presents the design of RSEA and the associated control algorithms. To generate joint torque as desired, a torsional spring is installed between a motor and a human joint, and the motor is controlled to produce a proper spring deflection for torque generation. When the desired torque is zero, the motor must follow the human joint motion, which requires that the friction and the inertia of the motor be compensated. The human joint and the body part impose the load on the RSEA. They interact with uncertain environments and their physical properties vary with time. In this chapter, the disturbance observer method is applied to make the RSEA precisely generate the desired torque under such time-varying conditions. Based on the nominal model preserved by the disturbance observer, feedback and feedforward controllers are optimally designed for the desired performance: i.e. the RSEA 1) exhibits very low impedance and 2) generates the desired torque precisely while interacting with a human. The effectiveness of the proposed design is verified by experiments.

Keywords

Rotary series elastic actuator Disturbance observer Force mode control Human-robot interaction Motor impedance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hayashi, T., Kawamoto, H., Sankai, Y.: Control method of robot suit HAL working as operator’s muscle using biological and dynamical information. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.: IROS 2005, pp. 3063–3068 (2005)Google Scholar
  2. 2.
    HAL-5, Cyberdyne Co., http://www.cyberdyne.jp
  3. 3.
    Kazerooni, H., Racine, J., Huang, L., Steger, R.: On the control of the berkeley lower extremity exoskeleton (BLEEX). In: Proc. IEEE Int. Conf. Robotics Autom.: ICRA 2005, pp. 4353–4360 (2005)Google Scholar
  4. 4.
    Zoss, Kazerooni, H., Chu, A.: Biomechanical design of the berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatronics 11(2), 128–138 (2006)CrossRefGoogle Scholar
  5. 5.
    Yamamoto, K., Ishii, M., Noborisaka, H., Hyodo, K.: Stand alone wearable power assisting suit-sensing and control systems. In: Proc. IEEE Int. Workshop Robot Human Interactive Commun.: ROMAN 2004, pp. 661–666.Google Scholar
  6. 6.
    Kong, K., Jeon, D.: Design and control of an exoskeleton for the elderly and patients. IEEE/ASME Trans. Mechatronics 11(4), 428–432 (2006)CrossRefGoogle Scholar
  7. 7.
    Kong, K., Jeon, D.: Fuzzy control of a new tendon-driven exoskeletal power assistive device. In: Proc. IEEE/ASME Int. Conf. Adv. Intell. Mech.: AIM 2005, pp. 146–151 (2005)Google Scholar
  8. 8.
    Banala, S.K., Agrawal, S.K., Fattah, A., Krishnamoorthy, V., Hsu, W., Scholz, J., Rudolph, K.: Gravity-balancing leg orthosis and its performance evaluation. IEEE Trans. Robotics 22(6), 1228–1239 (2006)CrossRefGoogle Scholar
  9. 9.
    Riener, R., Lünenburger, L., Jezernik, S., Anderschitz, M., Colombo, G., Dietz, V.: Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans. Neural Syst. Rehabil. Eng. 13(3), 380–394 (2005)CrossRefGoogle Scholar
  10. 10.
    Hogan, N.: Impedance control: an approach to manipulation, parts I, II, III. J. Dyn. Syst., Meas. Control 107, 1–23 (1985)CrossRefMATHGoogle Scholar
  11. 11.
    Blaya, J., Herr, H.: Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans. Rehabil. Eng. 12(1), 24–31 (2004)CrossRefGoogle Scholar
  12. 12.
    Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential and Challenges. SPIE Press (2004)Google Scholar
  13. 13.
    Noritsugu, T., Tanaka, T.: Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE/ASME Trans. Mechatronics 2(4), 259–267 (1997)CrossRefGoogle Scholar
  14. 14.
    Buerger, S.P., Hogan, N.: Complementary stability and loop shaping for improved human-robot interaction. IEEE Trans. Robotics 23(2), 232–244 (2007)CrossRefGoogle Scholar
  15. 15.
    Paluska, D., Herr, H.: Series elasticity and actuator power output. In: Proc. IEEE Int. Conf. Robotics Autom.: ICRA 2006, pp. 1830–1833 (2006)Google Scholar
  16. 16.
    Kong, K., Tomizuka, M.: Flexible joint actuator for patient’s rehabilitation device. In: Proc. IEEE Int. Symp. Robot Human Interactive Commun.: ROMAN 2007, pp. 1179–1184 (2007)Google Scholar
  17. 17.
    Pratt, J., Krupp, B., Morse, C.: Series elastic actuators for high fidelity force control. Int. J. Ind. Robot 29(3), 234–241 (2002)CrossRefGoogle Scholar
  18. 18.
    Low, K.H.: Initial experiments of a leg mechanism with a flexible geared joint and footpad. Adv. Robotics 19(4), 373–399 (2005)CrossRefGoogle Scholar
  19. 19.
    Pratt, G.A., Williamson, M.W.: Series elastic actuators. In: Proc. IEEE/RSJ Int. Conf. Intell. Robotics Syst.: IROS, Pittsburgh, PA, pp. 399–406 (1995)Google Scholar
  20. 20.
    Robinson, D.W., Pratt, J.E., Paluska, D.J., Pratt, G.A.: Series elastic actuator development for a biomimetic walking robot. In: Proc. IEEE/ASME Int. Conf. Adv. Intell. Mech.: AIM 1999, Atlanta, GA, pp. 561–568 (1999)Google Scholar
  21. 21.
    Williamson, M.M.: Series Elastic Actuators. M.S. Thesis, Massachusetts Institute of Technology (June 1995)Google Scholar
  22. 22.
    Alter, D.M., Tsao, T.C.: Dynamic stiffness enhancement of direct linear motor feed drives for machining. In: Proc. American Cont. Conf.: ACC 1994, vol. 3, pp. 3303–3307 (1994)Google Scholar
  23. 23.
    Katsura, S., Matsumoto, Y., Ohnishi, K.: Analysis and experimental validation of force bandwidth for force control. IEEE Trans. Ind. Electronics 53(3), 922–928 (2006)CrossRefGoogle Scholar
  24. 24.
    McKnight, E.: Control of Joint Forces: a New Perspective. Afcea International Press (1989)Google Scholar
  25. 25.
    Shigley, J., Mischke, C., Budynas, R.: Mechanical Engineering Design, ch. 10. McGraw-Hill (2004)Google Scholar
  26. 26.
    Winter, D.: Biomechanical Motor Control and Human Movement. Wiley-Interscience Publication (1990)Google Scholar
  27. 27.
    Lee, H., Tomizuka, M.: Robust motion controller design for high-accuracy positioning systems. IEEE Trans. Ind. Electronics 43(1), 48–55 (1996)CrossRefGoogle Scholar
  28. 28.
    Kong, K., Tomizuka, M.: Smooth and continuous human gait phase detection based on foot pressure patterns. In: Proc. IEEE Int. Conf. Robotics Autom.: ICRA 2008, pp. 3678–3683 (2008)Google Scholar
  29. 29.
    Masia, L., Krebs, H., Cappa, P., Hogan, N.: Design and characterization of hand module for whole-arm rehabilitation following stroke. IEEE/ASME Trans. Mechatronics 12(4), 399–407 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kyoungchul Kong
    • 1
  • Joonbum Bae
    • 2
  • Masayoshi Tomizuka
    • 3
  1. 1.Department of Mechanical EngineeringSogang UniversitySeoulKorea
  2. 2.School of Mechanical and Advanced Materials EngineeringUNISTUlsanKorea
  3. 3.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations