Advertisement

Using Cognitive Ubiquitous Robots for Assisting Dependent People in Smart Spaces

  • Abdelghani ChibaniEmail author
  • Antonis Bikakis
  • Theodore Patkos
  • Yacine Amirat
  • Sofiane Bouznad
  • Naouel Ayari
  • Lyazid Sabri
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 106)

Abstract

In this chapter we discuss the necessity to move beyond built-in monotonic semantic web based reasoning-architectures for endowing ubiquitous robots with cognitive capabilities, which are strongly required in ambient assistive living, towards new architectures that combine different reasoning mechanisms to achieve better context awareness and adaptability in dynamic environments. We also present practical reasoning approaches that we have developed during the last decade for ambient intelligence and robotics applications. Finally, we discuss future directions that should be investigated to implement high-level cognitive capabilities that can be supported by cloud computing platforms as reasoning backend for robots and connected devices in smart spaces. These will enhance the human-environment interaction using robots, emergency prevention, management and rescue.

Keywords

Situation Awareness Smart Home Ambient Intelligence Epistemic Reasoning Smart Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dey, A.K.: Understanding and using context. Personal Ubiquitous Computing 5(1), 4–7 (2001)CrossRefGoogle Scholar
  2. 2.
    Horrocks, I., Patel-Schneider, P.F.: Knowledge representation and reasoning on the semantic web: Owl. In: Handbook of Semantic Web Technologies, vol. 9 (2010)Google Scholar
  3. 3.
    Riboni, D., Bettini, C.: Owl 2 modeling and reasoning with complex human activities. Perv. and Mob. Computing 7, 379–395 (2011)CrossRefGoogle Scholar
  4. 4.
    Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.-C.: Scenarios for ambient intelligence in 2010. IST Programme Advisory Group, ISTAG (2001)Google Scholar
  5. 5.
    Yachir, A., Tari, K., Chibani, A., Amirat, Y.: Toward an Automatic Approach for Ubiquitous Robotic Services Composition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3717–3724 (2008)Google Scholar
  6. 6.
    Yachir, A., Tari, K., Amirat, Y., Chibani, A., Badache, N.: Qos based framework for ubiquitous robotic services composition. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2019–2026 (2009)Google Scholar
  7. 7.
    Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling and reasoning using owl. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 18–22 (2004)Google Scholar
  8. 8.
    Yau, S.S., Liu, J.: Hierarchical situation modeling and reasoning for pervasive computing. In: Proceedings of the Fourth IEEE Workshop on Software Technologies for Future Embedded and Ubiquitous Systems, and the Second International Workshop on Collaborative Computing, Integration, and Assurance (SEUS-WCCIA 2006), pp. 5–10 (2006)Google Scholar
  9. 9.
    Chen, H., Finin, T., Joshi, A.: The soupa ontology for pervasive computing. In: Ontologies for Agents: Theory and Experiences, pp. 233–258 (2005)Google Scholar
  10. 10.
    Francois, A.R.J., Nevatia, R., Hobbs, J., Bolles, R.C.: Verl: An ontology framework for representing and annotating video events. IEEE MultiMedia 12(4), 76–86 (2005)CrossRefGoogle Scholar
  11. 11.
    Zarri, G.P., Sabri, L., Chibani, A., Amirat, Y.: Semantic-based industrial engineering: Problems and solutions. In: Proceedings of the 2010 International Conference on Complex, Intelligent and Software Intensive Systems, pp. 1022–1027 (2010)Google Scholar
  12. 12.
    Sabri, L., Chibani, A., Amirat, Y., Zarri, G.-P.: Semantic reasoning framework to supervise and manage contexts and objects in pervasive computing environments. In: Proceedings of the 2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications, pp. 47–52 (2011)Google Scholar
  13. 13.
    Sabri, L., Chibani, A., Amirat, Y., Zarri, G.P.: Narrative reasoning for cognitive ubiquitous robots. In: IROS 2011 Workshop: Knowledge Representation for Autonomous Robots (2011)Google Scholar
  14. 14.
    Zarri, G.P.: Representation and Management of Narrative Information, Theoretical Principles and Implementation. Springer (2009)Google Scholar
  15. 15.
    Ayari, N., Chibani, A., Zarri, G.P., Amirat, Y.: Semi-automatic natural language representation for narrative information. Technical Report, UPEC LISSI LabGoogle Scholar
  16. 16.
    Santofimia, M.J., Fahlman, S.E., del Toro, X., Moya, F., Lopez, J.C.: A semantic model for actions and events in ambient intelligence. Journal Engineering Applications of Artificial Intelligence 24, 1432–1445 (2011)CrossRefGoogle Scholar
  17. 17.
    Ye, J., Dobson, S.: Exploring semantics in activity recognition using context lattices. Journal of Ambient Intelligence and Smart Environments 2, 389–407 (2010)Google Scholar
  18. 18.
    Chen, L., Nugent, C., Mulvenna, M., Finlay, D., Hong, X., Poland, M.: A logical framework for behaviour reasoning and assistance in a smart home. Int. Journal of Assistive Robotics and Mechatronics 9 (2008)Google Scholar
  19. 19.
    Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, Vancouver, British Columbia, Canada, July 22-26, pp. 385–390 (2007)Google Scholar
  20. 20.
    Bikakis, A., Antoniou, G.: Defeasible Contextual Reasoning with Arguments in Ambient Intelligence. IEEE Trans. on Knowledge and Data Engineering 22(11), 1492–1506 (2010)CrossRefGoogle Scholar
  21. 21.
    Paschke, A.: ECA-RuleML: An Approach combining ECA Rules with temporal interval-based KR Event/Action Logics and Transactional Update Logics. CoRR, vol. abs/cs/0610167 (2006)Google Scholar
  22. 22.
    Kowalski, R., Sergot, M.: A Logic-Based Calculus of Events. New Generation Computing 4(1), 67–95 (1986)CrossRefGoogle Scholar
  23. 23.
    Miller, R., Shanahan, M.: Some alternative formulations of the event calculus. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 452–490. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Patkos, T., Chibani, A., Plexousakis, D., Amirat, Y.: A production rule-based framework for causal and epistemic reasoning. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 120–135. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Patkos, T., Plexousakis, D.: Reasoning with knowledge, action and time in dynamic and uncertain domains. In: IJCAI 2009, pp. 885–890 (2009)Google Scholar
  26. 26.
    Patkos, T., Plexousakiss, D.: Efficient epistemic reasoning in partially observable dynamic domains using hidden causal dependencies. In: The 9th International Workshop on Nonmonotonic Reasoning, Action and Change (NRAC 2011), pp. 55–62 (2011)Google Scholar
  27. 27.
    Moore, R.C.: A formal theory of knowledge and action. In: Formal Theories of the Commonsense World, pp. 319–358 (1985)Google Scholar
  28. 28.
    Scherl, R.: Reasoning about the Interaction of Knowledge, Time and Concurrent Actions in the Situation Calculus. In: IJCAI 2003, pp. 1091–1098 (2003)Google Scholar
  29. 29.
    Thielscher, M.: Representing the Knowledge of a Robot. In: KR 2000, pp. 109–120 (2000)Google Scholar
  30. 30.
    Bikakis, A., Antoniou, G.: Contextual Defeasible Logic and Its Application to Ambient Intelligence. IEEE Transactions on Systems, Man, and Cybernetics, Part A 41(4), 705–716 (2011)CrossRefGoogle Scholar
  31. 31.
    Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with conflicts in Ambient Intelligence. Knowledge and Information Systems 27(1), 45–84 (2011)CrossRefGoogle Scholar
  32. 32.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defeasible logic. ACM Transactions on Computational Logic 2(2), 255–287 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do without modal logics. Artificial Intelligence 65(1) (1994)Google Scholar
  34. 34.
    Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reasoning=locality+compatibility. Artificial Intelligence 127(2), 221–259 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Moawad, A., Bikakis, A., Caire, P., Nain, G., Le Traon, Y.: A Rule-based Contextual Reasoning Platform for Ambient Intelligence environments. In: Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A., Paschke, A. (eds.) RuleML 2013. LNCS, vol. 8035, pp. 158–172. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  36. 36.
    Fouquet, F., Barais, O., Plouzeau, N., Jézéquel, J.-M., Morin, B., Fleurey, F.: A Dynamic Component Model for Cyber Physical Systems. In: 15th International ACM SIGSOFT Symposium on Component Based Software Engineering (July 2012), http://hal.inria.fr/hal-00713769
  37. 37.
    Palacios, H., Geffner, H.: Compiling uncertainty away in conformant planning problems with bounded width. Journal of Artificial Intelligence Research 35(1), 623–675 (2009)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Abdelghani Chibani
    • 1
    Email author
  • Antonis Bikakis
    • 3
  • Theodore Patkos
    • 1
    • 2
  • Yacine Amirat
    • 1
  • Sofiane Bouznad
    • 1
  • Naouel Ayari
    • 1
  • Lyazid Sabri
    • 1
  1. 1.LISSI LaboratoryUniversity Paris EstCrteilFrance
  2. 2.FORTH ICSHeraklionGreece
  3. 3.University College LondonLondonUK

Personalised recommendations