Direct Visualization of Piecewise Polynomial Data

  • T. BolemannEmail author
  • M. Üffinger
  • F. Sadlo
  • T. Ertl
  • C. -D. Munz
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 128)


High order methods are regarded as a primary means to significantly improve the efficiency of numerical techniques. While the particular high order methods can be very distinct, most have in common that their solution is represented by piecewise polynomials. However, since high order methods evolved only recently, most of the present visualization techniques are not suited for the needs of resulting simulation data; they are predominantly based on tensor product linear interpolation and applying them to high order data is nowadays accomplished by static resampling, involving prohibitive storage and computation costs, and providing at most sufficient results. In this paper, we describe two of our existing visualization approaches and discuss some of the involved problems and concepts, and exemplify them using different high order simulation results.


High order methods direct volume rendering GPU-based visualization piecewise polynomial data unstructured grids parallel rendering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bassi, F., Rebay, S.: A high order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. Journal of Computational Physics 131, 267–279 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bassi, F., Rebay, S.: A high-order discontinuous Galerkin finite element method solution of the 2D Euler equations. Journal of Computational Physics 138, 251–285 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bassi, F., Rebay, S.: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations. International Journal for Numerical Methods in Fluids 40, 197–207 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bergner, S., Möller, T., Weiskopf, D., Muraki, D.J.: A spectral analysis of function composition and its implications for sampling in direct volume visualization. IEEE Transactions on Visualization and Computer Graphics 12(5), 1353–1360 (2006)CrossRefGoogle Scholar
  5. 5.
    Bogey, C., Bailly, C.: Large eddy simulations of transitional round jets: influence of the reynolds number on flow development and energy dissipation. Physics of Fluids 18(6), 65101 (2006)CrossRefGoogle Scholar
  6. 6.
    Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection p1-discontinuous Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér 25(3), 337–361 (1991)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Garrity, M.P.: Raytracing irregular volume data. Symposium on Volume Visualization 24(5) (1990)Google Scholar
  8. 8.
    Gassner, G., Beck, A.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theoretical and Computational Fluid Dynamics 27(3-4), 221–237 (2013)CrossRefGoogle Scholar
  9. 9.
    Gassner, G., Kopriva, D.: A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods. SIAM J. Scientific Computing 33(5), 2560–2579 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Gassner, G., Lörcher, F., Munz, C.-D.: A discontinuous Galerkin scheme based on a space-time expansion. II. Viscous flow equations in multi dimensions. J. Sci. Comp. 34(3), 260–286 (2008)CrossRefzbMATHGoogle Scholar
  11. 11.
    Gassner, G.J., Lörcher, F., Munz, C.-D., Hesthaven, J.S.: Polymorphic nodal elements and their application in discontinuous galerkin methods. Journal of Computational Physics 228(5), 1573–1590 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering 79(11), 1309–1331 (2009)Google Scholar
  13. 13.
    Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.-D.: Explicit discontinuous Galerkin methods for unsteady problems. Computers and Fluids 61, 86–93 (2012)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Lörcher, F., Gassner, G., Munz, C.-D.: An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations. Journal of Computational Physics 227(11), 5649–5670 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: SIGGRAPH 1987: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, vol. 21, pp. 163–169 (1987)Google Scholar
  16. 16.
    Meyer, M., Nelson, B., Kirby, R., Whitaker, R.: Particle systems for efficient and accurate high-order finite element visualization. IEEE Transactions on Visualization and Computer Graphics 13(5), 1015–1026 (2007)CrossRefGoogle Scholar
  17. 17.
    Nelson, B., Haimes, R., Kirby, R.M.: GPU-based interactive cut-surface extraction from high-order finite element fields. IEEE Transactions on Visualization and Computer Graphics 17(12), 1803–1811 (2011)CrossRefGoogle Scholar
  18. 18.
    Nelson, B., Liu, E., Kirby, R., Haimes, R.: ElVis: A system for the accurate and interactive visualization of high-order finite element solutions. IEEE Transactions on Visualization and Computer Graphics 18(12), 2325–2334 (2012)CrossRefGoogle Scholar
  19. 19.
    Pagot, C., Osmari, D., Sadlo, F., Weiskopf, D., Ertl, T., Comba, J.: Efficient parallel vectors feature extraction from higher-order data. Computer Graphics Forum 30(3), 751–760 (2011)CrossRefGoogle Scholar
  20. 20.
    Pagot, C., Vollrath, J., Sadlo, F., Weiskopf, D., Ertl, T., ao Luiz Dihl Comba, J.: Interactive isocontouring of high-order surfaces. In: Scientific Visualization: Interactions, Features, Metaphors. Dagstuhl Follow-Ups, vol. 2, pp. 276–291 (2011)Google Scholar
  21. 21.
    Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)Google Scholar
  22. 22.
    Remacle, J.-F., Chevaugeon, N., Marchandise, E., Geuzaine, C.: Efficient visualization of high-order finite elements. International Journal for Numerical Methods in Engineering 69(4), 750–771 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Stegmaier, S., Strengert, M., Klein, T., Ertl, T.: A simple and flexible volume rendering framework for graphics-hardware-based raycasting. In: Fourth International Workshop on Volume Graphics 2005, pp. 187–241 (2005)Google Scholar
  24. 24.
    Üffinger, M., Frey, S., Ertl, T.: Interactive high-quality visualization of higher-order finite elements. Computer Graphics Forum 29(2), 115–136 (2010)CrossRefGoogle Scholar
  25. 25.
    Üffinger, M., Schweitzer, M.A., Sadlo, F., Ertl, T.: Direct visualization of particle-partition of unity data. In: Proceedings VMV 2011, pp. 255–262 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • T. Bolemann
    • 1
    Email author
  • M. Üffinger
    • 2
  • F. Sadlo
    • 2
  • T. Ertl
    • 2
  • C. -D. Munz
    • 1
  1. 1.Institute for Aerodynamics and GasdynamicsUniversity of StuttgartStuttgartGermany
  2. 2.Visualization Research CenterUniversity of StuttgartStuttgartGermany

Personalised recommendations