A Comparative Evaluation of 2D And 3D Visual Exploration of Document Search Results

  • Rafael E. Banchs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8870)


This work presents and experimental comparison between 2D and 3D search and visualization platforms. The main objective of the study is two explore the following two research questions: what method is most robust in terms of the success rate? And, what method is faster in terms of average search time? The obtained results show that, although successful rates and subject preferences are higher for 3D search and visualization, search times are still lower for 2D search and visualization.


Document Search Ranking Visual Exploration Interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bush, V.: As We Think. Atlantic Monthly 176, 101–108 (1945)Google Scholar
  2. 2.
    Salton, G.: The SMART Retrieval System—Experiments in Automatic Document Retrieval. Prentice Hall Inc., Englewood Cliffs (1971)Google Scholar
  3. 3.
    Jones, K.S.: Automatic Keyword Classification for Information Retrieval, Butterworths, London (1971)Google Scholar
  4. 4.
    Sparck Jones, K.: A Statistical Interpretation of Term Specificity and its Application in Retrieval. Journal of Documentation 28, 11–21 (1972)CrossRefGoogle Scholar
  5. 5.
    Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Information Retrieval. Communications of the ACM 18(11), 613–620 (1975)CrossRefMATHGoogle Scholar
  6. 6.
    Kruskal, J.B., Wish, M.: Multidimensional Scaling, Sage University Paper series on Quantitative Application in the Social Sciences, pp. 7–11. Sage Publications, Beverly Hills (1978)Google Scholar
  7. 7.
    Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., Saarela, A.: Self Organization of a Massive Document Collection. IEEE Transaction on Neural Networks 11(3), 574–585 (2000)CrossRefGoogle Scholar
  8. 8.
    Lagus, K., Kaski, S., Kohonen, T.: Mining Massive Document Collections by the WEBSOM Method. Information Sciences 163(1-3), 135–156 (2004)CrossRefGoogle Scholar
  9. 9.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the Dimensionality of Data with Neural Networks. Science 313, 504–507 (2006)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics (2002)Google Scholar
  11. 11.
    Deerwester, S., et al.: Improving Information Retrieval with Latent Semantic Indexing. In: Proceedings of the 51st Annual Meeting of the American Society for Information Science (1988)Google Scholar
  12. 12.
    Correa, R.F., Ludermir, T.B.: Dimensionality Reduction of Very Large Document Collections by Semantic Mapping. In: Proceedings of 6th Int. Workshop on Self-Organizing Maps (2007)Google Scholar
  13. 13.
    Feldman, R., Klosgen, W., Zilberstein, A.: Visualization Techniques to Explore Data Mining Results for Document Collections. In: Proceedings of the Third Annual Conference on Knowledge Discovery and Data Mining (KDD), Newport Beach (1997)Google Scholar
  14. 14.
    Newman, D., Baldwin, T., Cavedon, L., Huang, E., Karimi, S., Martinez, D., Scholer, F., Zobel, J.: Visualizing Search Results and Document Collections using Topic Maps. Web Semantics: Science, Services and Agents on the World Wide Web 8 (2010)Google Scholar
  15. 15.
    Kandogan, E.: Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2001), pp. 107–116 (2001)Google Scholar
  16. 16.
    Olsen, K.A., Korfhage, R.R., Sochats, K.M., Spring, M.B., Williams, J.G.: Visualization of a Document Collection: The Vibe System. Information Processing & Management 29(1), 69–81 (1993)CrossRefGoogle Scholar
  17. 17.
    Wise, J.A., Thomas, J.J., Pennock, K.A., Lantrip, D.B., Pottier, M.C., Schur, A., Crow, V.: Visualizing the Non-visual: Spatial Analysis and Interaction with Information from Text Documents. In: Proceedings of the IEEE Symposium on Information Visualization (INFOVIS 1995). IEEE Computer Society, Washington, DC (1995)Google Scholar
  18. 18.
    Benford, S., Snowdown, D., Greenhalgh, C., Ingram, R., Knox, I., Brown, C.: VR-VIBE: A Visual Environment for Co-operative Information Retrieval. In: Eurographics 1995, pp. 349–360 (1995)Google Scholar
  19. 19.
    Morse, E.L., Lewis, M.: Why Information Retrieval Visualization Sometimes Fail. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 1680–1685 (1997)Google Scholar
  20. 20.
    Crow, V., Pottier, M., Thomas, J., Lantrip, D., Struble, C., Pennock, K., Schur, A., Wise, J., Fiegel, T., York, J.: Multidimensional Visualization and Browsing for Intelligence Analysis. Technical Report, Pacific Northwest Lab, Richland, WA, United States (1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rafael E. Banchs
    • 1
  1. 1.Institute for Infocomm ResearchHuman Language TechnologySingapore

Personalised recommendations