Visual Decision Support for Policy Making: Advancing Policy Analysis with Visualization

  • Tobias RuppertEmail author
  • Jens Dambruch
  • Michel Krämer
  • Tina Balke
  • Marco Gavanelli
  • Stefano Bragaglia
  • Federico Chesani
  • Michela Milano
  • Jörn Kohlhammer
Part of the Public Administration and Information Technology book series (PAIT, volume 10)


Today’s politicians are confronted with new information technologies to tackle complex decision-making problems. In order to make sustainable decisions, a profound analysis of societal problems and possible solutions (policy options) needs to be performed. In this policy-analysis process, different stakeholders are involved. Besides internal direct advisors of the policy makers (policy analysts), external experts from different scientific disciplines can support evidence-based decision making. Despite the alleged importance of scientific advice in the policy-making process, it is observed that scientific results are often not used. In this work, a concept is described that supports the collaboration between scientists and politicians. We propose a science–policy interface that is realized by including information visualization in the policy-analysis process. Therefore, we identify synergy effects between both fields and introduce a methodology for addressing the current challenges of science–policy interfaces with visualization. Finally, we describe three exemplary case studies carried out in European research projects that instantiate the concept of this approach.


Pareto Front Policy Instrument Policy Analysis Policy Option Information Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research presented here is partly carried out within the project “urbanAPI” (Interactive Analysis, Simulation and Visualisation Tools for Urban Agile Policy Implementation), and “ePolicy”(Engineering the Policy-Making Life Cycle) funded from the 7th Framework Program of the European Commission, call identifier: FP7-ICT-2011-7, under the grant agreement no: 288577 (urbanAPI), and no: 288147 (ePolicy), started in October 2011.


  1. Abdou M, Hamill L, Gilbert N (2012) Designing and building an agent-based model. In: Heppenstall AJ, Crooks AT, See LM, Batty M (eds) Agent-based models of geographical systems. Springer, Belmont, pp 141–165Google Scholar
  2. Anderson JE (1975) Public policymaking, 7th edn. (2010). Wadsworth, BelmontGoogle Scholar
  3. Andrews K (2008) Evaluation comes in many guises. In: BELIV’08 Workshop, CHI 2008. Florence, pp 8–10Google Scholar
  4. Antunes L, Respício A, Balsa J, Coelho H (2008) Policy decision support through social simulation. In: Adam F, Humphreys P (eds) Encyclopedia of decision making and decision support technologies. IGI Global, Hershey, pp 716–723Google Scholar
  5. Bertin J (1983) Semiology of graphics. University of Wisconsin Press, MadisonGoogle Scholar
  6. Blum S, Schubert K (2009) Politikfeldanalyse. VS Verlag für Sozialwissenschaften, WiesbadenGoogle Scholar
  7. Brenner T, Werker C (2009) Policy advice derived from simulation models. J Artif Soc Soc Simul 12(4):2Google Scholar
  8. Cagnoli P (2010) VAS. Valutazione ambientale strategica. Dario Flaccovio, PalermoGoogle Scholar
  9. Card S, Mackinlay J, Shneiderman B (eds) (1999) Readings in information visualization: using vision to think. Morgan Kaufann, San FranciscoGoogle Scholar
  10. Dambruch J, Peters-Anders J, Gebetsroither E (2013) User interface elements documentation—deliverable 3.2 of the project “urbanAPI” (interactive analysis, simulation and visualisation tools for urban agile policy implementation).
  11. Dobuzinskis L, Howlett M, Laycock D (2005) Policy analysis in Canada: the state of the art. University of Toronto Press, TorontoGoogle Scholar
  12. Edmonds B, Hernandez C, Troitzsch KG (2007) Social simulation: technologies, advances and new discoveries. IGI Global, HersheyGoogle Scholar
  13. European Commission (2010) 7th framework programme for research and technological developmentGoogle Scholar
  14. Few S (2009) Now you see it: simple visualization techniques for quantitative analysis. Analytics Press, OaklandGoogle Scholar
  15. Fischer F, Miller G, Sidney M (2007) Handbook of public policy analysis: theory, politics, and methods. CRC Press, Boca RatonGoogle Scholar
  16. Gavanelli M, Riguzzi F, Milano M, Cagnoli P (2010) Logic-based decision support for strategic environmental assessment. Theory practice of logic programming, 26th International Conference on Logic Programming (ICLP'10) (Special Issue, vol. 10, issue no. 4–6, pp 643–658)Google Scholar
  17. Gavanelli, M, Riguzzi F, Milano M, Cagnoli P (2013) Constraint and optimization techniques for supporting policy making. In: Yu T, Chawla N, Simoff S (eds) Computational intelligent data analysis for sustainable development, data mining and knowledge discovery series, Chap. 12. Chapman & Hall/CRC, Boca RatonGoogle Scholar
  18. Gebetsroither E (2009) Combining multi-agent systems modelling and system dynamics modelling in theory and practice. PhD thesis, Alpen-Adria-Universität Klagenfurt, Faculty of technical sciencesGoogle Scholar
  19. Gilmore DJ, Green TRG (1984) Comprehension and recall of miniature programs. Int J Man-Mach Stud 21(1):31–48CrossRefGoogle Scholar
  20. Göttrik W (2009) Politikberatung und Politikgestaltung. In: Schubert K, Bandelow NC (eds) Lehrbuch der Politikfeldanalyse 2.0. Oldenbourg Wissenschaftsverlag, MünchenGoogle Scholar
  21. Green TRG (1989) Cognitive dimensions of notations. In: Sutcliffe A, Macaulay L (eds) People and computers V. Cambridge University Press, Cambridge, pp 443–460Google Scholar
  22. Greven MT (2008) Politik als Problemlösung - und als vernachlässigte Problemursache: Anmerkungen zur Policy-Forschung. In: Janning F, Toens K (eds) Die Zukunft der Policy-Forschung. Theorien, Methoden, Anwendungen. VS Verlag für Sozialwissenschaften, WiesbadenGoogle Scholar
  23. Heath B, Hill R, Ciarallo F (2009) A survey of agent-based modeling practices (January 1998 to July 2008). J Artif Soc Soc Simul 12(4):9Google Scholar
  24. Hove Svd (2007) A rationale for science-policy interfaces. Futures 39:807–826CrossRefGoogle Scholar
  25. Howlett M, Ramesh M, Perl A (1995) Studying public policy: policy cycles and policy subsystems. Oxford University Press, OxfordGoogle Scholar
  26. Howlett M, Wellstead A (2009) Re-visiting Meltsner: policy advice systems and the multi-dimensional nature of professional policy analysis. Available at SSRN 1546251Google Scholar
  27. Janse G (2008) Communication between forest scientists and forest policy-makers in Europe: a survey on both sides of the science/policy interface. For Policy Econ 10:183–194CrossRefGoogle Scholar
  28. Jones CO (1970) An introduction to the study of public policy, 3rd edn. (1984). Brooks/Cole Publishing Co., MontereyGoogle Scholar
  29. Kahn Z, Ludlow D (2013) User requirements definition—deliverable 2.1 of the project “urbanAPI” (interactive analysis, simulation and visualisation tools for urban agile policy implementation).
  30. Keim D, Andrienko G, Fekete JD, Görg C, Kohlhammer J, Melançon G (2008) Visual analytics: definition, process, and challenges. In: Information visualization. Springer, BerlinGoogle Scholar
  31. Kohlhammer J, Nazemi K, Ruppert T, Burkhardt D (2012) Toward visualization in policy modeling. Comput Graph Appl IEEE 32(5):84–89CrossRefGoogle Scholar
  32. Kosara R, Mackinlay J (2013) Storytelling: the next step for visualization. Computer 46(5):44–50CrossRefGoogle Scholar
  33. Krämer M, Kehlenbach A (2013) Interactive, GPU-based urban growth simulation for agile urban policy modelling. In: Rekdalsbakken W, Bye R, Zhang H (eds) Proceedings of the 27th European Conference on Modelling and Simulation (ECMS). European Council for Modelling and Simulation, Ålesund, Norway, pp 75–81Google Scholar
  34. Krämer M, Ludlow D, Khan Z (2013) Domain-specific languages for agile urban policy modelling. In: Rekdalsbakken W, Bye R, Zhang H (eds) Proceedings of the 27th European Conference on Modelling and Simulation (ECMS). European Council for Modelling and Simulation, Ålesund, Norway, pp 673–680Google Scholar
  35. Lam H, Bertini E, Isenberg P, Plaisant C, Carpendale S (2012) Empirical studies in information visualization: Seven scenarios. IEEE Trans Vis Comput Graph 18:1520–1536CrossRefGoogle Scholar
  36. Leopold L (1971) A procedure for evaluating environmental impact. In: United States Geological Surve, Geological Survey Circular No. 645Google Scholar
  37. Loibl W, Peters-Anders J (2012) Mobile phone data as source to discover spatial activity and motion patterns. In: GI Forum 2012: Geovisualization, Society and Learning. Wichman, pp 524–533Google Scholar
  38. Munzner T (2009) A nested model for visualization design and validation. IEEE Trans Vis Comput Graph 15(6):921–928CrossRefGoogle Scholar
  39. Ruppert T, Bernard J, Kohlhammer J (2013a) Bridging knowledge gaps in policy analysis with information visualization. In: Proceedings of IFIP Conference on Electronic Government. Koblenz, GermanyGoogle Scholar
  40. Ruppert T, Bernard J, Ulmer A, Kuijper A, Kohlhammer J (2013b) Visual access to optimization problems in strategic environmental assessment. In: International Symposium on Visual Computing ISVC. Las Vegas, USA, pp 361–372Google Scholar
  41. Schneider V (2008) Komplexität, politische Steuerung, und evidenz-basiertes Policy-Making. In: Janning F, Toens K (eds) Die Zukunft der Policy-Forschung. Theorien, Methoden, Anwendungen. VS Verlag für Sozialwissenschaften, WiesbadenGoogle Scholar
  42. Schneider V, Janning F (2006) Politikfeldanalyse. Akteure, Diskurse und Netzwerke in der öffentlichen Politik. VS Verlag für Sozialwissenschaften, WiesbadenGoogle Scholar
  43. Sedlmair M, Meyer MD, Munzner T (2012) Design study methodology: reflections from the trenches and the stacks. IEEE Trans Vis Comput Graph 18:2431–2440CrossRefGoogle Scholar
  44. Shneiderman B, Bederson B (2003) The craft of information visualization: readings and reflections. Morgan Kaufmann, San FranciscoGoogle Scholar
  45. Shulock N (1999) The paradox of policy analysis: if it is not used, why do we produce so much of it? J Policy Anal Manag 18(2):226–244CrossRefGoogle Scholar
  46. Thomas JJ, Cook KA (2005) Illuminating the path: the research and development agenda for visual analytics. IEEE Computer Society Press, Los AlamitosGoogle Scholar
  47. Weimer DL, Vining AR (2005) Policy analysis: concepts and practice. Prentice Hall, Upper Saddle RiverGoogle Scholar
  48. Whitley KN (1997) Visual programming languages and the empirical evidence for and against. J Vis Lang Comput 8(1):109–142CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tobias Ruppert
    • 1
    Email author
  • Jens Dambruch
    • 1
  • Michel Krämer
    • 1
  • Tina Balke
    • 3
  • Marco Gavanelli
    • 4
  • Stefano Bragaglia
    • 5
  • Federico Chesani
    • 5
  • Michela Milano
    • 5
  • Jörn Kohlhammer
    • 2
  1. 1.Fraunhofer Institute for Computer Graphics ResearchDarmstadtGermany
  2. 2.GRIS, TU Darmstadt & Fraunhofer IGDDarmstadtGermany
  3. 3.University of SurreySurreyUK
  4. 4.University of FerraraFerraraItaly
  5. 5.University of BolognaBolognaItaly

Personalised recommendations