Advertisement

Necessary and Sufficient Preconditions via Eager Abstraction

  • Mohamed Nassim Seghir
  • Peter Schrammel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8858)

Abstract

The precondition for safe execution of a procedure is useful for understanding, verifying and debugging programs. We have previously presented a cegar-based approach for inferring necessary and sufficient preconditions based on the iterative abstraction-refinement of the set of safe and unsafe states until they become disjoint. A drawback of that approach is that safe and unsafe traces are explored separately and each time they are built entirely before being checked for consistency. In this paper, we present an eager approach that explores shared prefixes between safe and unsafe traces conjointly. As a result, individual state sets, by construction, fulfil the property of separation between safe and unsafe states without requiring any refinement. Experiments using our implementation of this technique in the precondition generator P-Gen show a significant improvement compared to our previous cegar-based method. In some cases the running time drops from several minutes to several seconds.

Keywords

Inference Rule General Predicate Unsafe State Predicate Abstraction Weak Precondition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seghir, M.N., Kroening, D.: Counterexample-guided precondition inference. In: Felleisen, M., Gardner, P. (eds.) ESO 2013. LNCS, vol. 7792, pp. 451–471. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL, pp. 232–244 (2004)Google Scholar
  3. 3.
    Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program checking. Technical Report HPL-2003-148, HP Lab (2003)Google Scholar
  6. 6.
    de Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70 (2002)Google Scholar
  8. 8.
    Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Ball, T., Rajamani, S.K.: The SLAM project: Debugging system software via static analysis. In: POPL, pp. 1–3 (2002)Google Scholar
  11. 11.
    Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of software components in C. In: ICSE, pp. 385–395 (2003)Google Scholar
  12. 12.
    Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model checking with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 245–259. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Ivancic, F., Shlyakhter, I., Gupta, A., Ganai, M.K.: Model checking C programs using F-soft. In: ICCD, pp. 297–308 (2005)Google Scholar
  14. 14.
    Clarke, E., Kroning, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended static checking for java. In: PLDI, pp. 234–245 (2002)Google Scholar
  16. 16.
    Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: Vcc: Contract-based modular verification of concurrent c. In: ICSE Companion, pp. 429–430 (2009)Google Scholar
  18. 18.
    Moy, Y.: Sufficient preconditions for modular assertion checking. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 188–202. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Blanc, N., Kroening, D.: Race analysis for systemc using model checking. ACM Trans. Design Autom. Electr. Syst. 15 (2010)Google Scholar
  20. 20.
    Taghdiri, M.: Inferring specifications to detect errors in code. In: ASE, pp. 144–153 (2004)Google Scholar
  21. 21.
    Sankaranarayanan, S., Chaudhuri, S., Ivancic, F., Gupta, A.: Dynamic inference of likely data preconditions over predicates by tree learning. In: ISSTA, pp. 295–306 (2008)Google Scholar
  22. 22.
    Cousot, P., Cousot, R., Logozzo, F.: Precondition inference from intermittent assertions and application to contracts on collections. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 150–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of necessary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Miné, A.: Inferring sufficient conditions with backward polyhedral under-approximations. ENTCS 287, 89–100 (2012)Google Scholar
  25. 25.
    Bakhirkin, A., Berdine, J., Piterman, N.: Backward analysis via over-approximate abstraction and under-approximate subtraction. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp. 34–50. Springer, Heidelberg (2014)Google Scholar
  26. 26.
    Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI, pp. 46–55 (1993)Google Scholar
  27. 27.
    Rival, X.: Understanding the origin of alarms in ASTRÉE. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 303–319. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by means of bi-abduction. In: POPL, pp. 289–300 (2009)Google Scholar
  29. 29.
    Bozga, M., Iosif, R., Konečný, F.: Deciding conditional termination. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 252–266. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving conditional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 328–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mohamed Nassim Seghir
    • 1
  • Peter Schrammel
    • 2
  1. 1.University of EdinburghUK
  2. 2.University of OxfordUK

Personalised recommendations