Advertisement

Cascading Critical Nodes Detection with Load Redistribution in Complex Systems

  • Subhankar Mishra
  • Xiang Li
  • My T. Thai
  • Jungtaek Seo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8881)

Abstract

In complex networked systems, the failures of a few critical components will cause a large cascade of component failures because of operational dependencies between components, resulting in the breakdown of the network. Therefore, it is crucial to identify these critical nodes in the study of complex network vulnerability under cascading failure. Unfortunately, we show that this problem is NP-hard to be approximated within a ratio of \(O(n^{1-\epsilon })\). Accordingly, we design two approaches to solve this problem. The first one estimates the cascading potential of each node while the second one measures the cooperated impact of node failures under an ordered attack. Since smart-grids is an important complex networked infrastructure, we also demonstrate some safety setting for power grids using the designed algorithms.

Keywords

Complex network vulnerability Cascading failure Smart grids Inapproximability 

Notes

Acknowledgment

This work is partially supported by NSF Career Award 0953284.

References

  1. 1.
    Watts, D.J.: A simple model of global cascades on random networks. Proc. Nat. Acad. Sci. (PNAS) 99(9), 5766–5771 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Brummitt, C.D., D’Souza, R.M., Leicht, E.A.: Suppressing casades of load in interdependent networks. Proce. Nat. Acad. Sci. (PNAS) 109(12), E680–E689 (2012)CrossRefGoogle Scholar
  3. 3.
    Jacobson, V.: Congestion avoidance and control. SIGCOMM Comput. Commun. Rev. 18(4), 314–329 (1988)CrossRefGoogle Scholar
  4. 4.
    Petersen, I.: Fatal Defect Chasing Killer Computer Bugs. Vintage, New York (1995)Google Scholar
  5. 5.
    Sun, L., Wang, S., Li, K., Meng, D.: Analysis of cascading failure in gene networks. Front. Genet. 3, 292 (2012)CrossRefGoogle Scholar
  6. 6.
    Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)CrossRefGoogle Scholar
  7. 7.
    Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)CrossRefGoogle Scholar
  8. 8.
    Wang, J.-W., Rong, L.-L.: Cascade-based attack vulnerability on the us power grid. Saf. Sci. 47(10), 1332–1336 (2009)CrossRefGoogle Scholar
  9. 9.
    Wang, W., Cai, Q., Sun, Y., He, H.: Risk-aware attacks and catastrophic cascading failures in us power grid. In: 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011), pp. 1–6. IEEE (2011)Google Scholar
  10. 10.
    Wu, Z.-X., Peng, G., Wang, W.-X., Chan, S., Wong, E.W.-M.: Cascading failure spreading on weighted heterogeneous networks. J. Stat. Mech. Theory Exp. 2008(05), P05013 (2008)CrossRefGoogle Scholar
  11. 11.
    Vazirani, V.V.: Approximation Algorithms. Springer, New York (2001)Google Scholar
  12. 12.
    Chlebik, M., Chlebikova, J.: Complexity of approximating bounded variants of optimization problems. Theor. Comput. Sci. 354(3), 320–338 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  14. 14.
    Zhao, L., Park, K., Lai, Y.-C.: Attack vulnerability of scale-free networks due to cascading breakdown. Phys. Rev. E 70(3), 035101 (2004)CrossRefGoogle Scholar
  15. 15.
    Erdos, P., Rényi, A.: On the evolution of random graphs. Bull. Inst. Int. Stat. 38(4), 343–347 (1961)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Subhankar Mishra
    • 1
  • Xiang Li
    • 1
  • My T. Thai
    • 1
  • Jungtaek Seo
    • 2
  1. 1.Department of Computer and Information Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.The Attached Institute of ETRISeoulKorea

Personalised recommendations