A Dichotomy for Upper Domination in Monogenic Classes

  • Hassan AbouEisha
  • Shahid Hussain
  • Vadim LozinEmail author
  • Jérôme Monnot
  • Bernard Ries
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8881)


An upper dominating set in a graph is a minimal (with respect to set inclusion) dominating set of maximum cardinality. The problem of finding an upper dominating set is NP-hard for general graphs and in many restricted graph families. In the present paper, we study the computational complexity of this problem in monogenic classes of graphs (i.e. classes defined by a single forbidden induced subgraph) and show that the problem admits a dichotomy in this family. In particular, we prove that if the only forbidden induced subgraph is a \(P_4\) or a \(2K_2\) (or any induced subgraph of these graphs), then the problem can be solved in polynomial time. Otherwise, it is NP-hard.


  1. 1.
    Brandstädt, A., Engelfriet, J., Le, H.-O., Lozin, V.V.: Clique-width for 4-vertex forbidden subgraphs. Theory Comput. Syst. 39(4), 561–590 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Cheston, G.A., Fricke, G., Hedetniemi, S.T., Jacobs, D.P.: On the computational complexity of upper fractional domination. Discrete Appl. Math. 27(3), 195–207 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cockayne, E.J., Favaron, O., Payan, C., Thomason, A.G.: Contributions to the theory of domination, independence and irredundance in graphs. Discrete Math. 33(3), 249–258 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H Freeman, New York (1979)zbMATHGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-Complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Hare, E.O., Hedetniemi, S.T., Laskar, R.C., Peters, K., Wimer, T.: Linear-time computability of combinatorial problems on generalized-series-parallel graphs. In: Johnson, D.S., et al. (eds.) Discrete Algorithms and Complexity, pp. 437–457. Academic Press, New York (1987)CrossRefGoogle Scholar
  8. 8.
    Jacobson, M.S., Peters, K.: Chordal graphs and upper irredundance, upper domination and independence. Discrete Math. 86(1–3), 59–69 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Kamiński, M.: MAX-CUT and containment relations in graphs. Theor. Comput. Sci. 438, 89–95 (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Korobitsyn, D.V.: On the complexity of determining the domination number in monogenic classes of graphs. Diskretnaya Matematika 2(3), 90–96 (1990)zbMATHGoogle Scholar
  11. 11.
    Král’, D., Kratochvíl, J., Tuza, Z., Woeginger, G.J.: Complexity of Coloring Graphs without Forbidden Induced Subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Lozin, V.V., Mosca, R.: Independent sets in extensions of \(2K_2\)-free graphs. Discrete Appl. Math. 146(1), 74–80 (2005)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hassan AbouEisha
    • 1
  • Shahid Hussain
    • 1
  • Vadim Lozin
    • 2
    Email author
  • Jérôme Monnot
    • 3
    • 4
  • Bernard Ries
    • 3
    • 4
  1. 1.King Abdullah University of Science and TechnologyThuwalSaudia Arabia
  2. 2.DIMAP and Mathematics InstituteUniversity of WarwickCoventryUK
  3. 3.PSLUniversité Paris-DauphineParis Cedex 16France
  4. 4.CNRS, LAMSADE UMR 7243ParisFrance

Personalised recommendations