Early Presymptomatic Stages

  • Heiko Braak
  • Kelly Del Tredici
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 215)


Despite the existence of a variety of neurotransmitters and modulator substances, each of the non-thalamic nuclei with diffuse ascending projections is highly susceptible to the AD-associated pathological process (Tomlinson et al. 1981; Whitehouse et al. 1981, 1985; Mann et al. 1982; Mann 1983; German et al. 1987, 1992; Zweig et al. 1988; Chan-Palay and Asan 1989; Hertz 1989; Busch et al. 1997; Rüb et al. 2000; Sassin et al. 2000; Parvizi et al. 2001; Zarow et al. 2003; Mesulam et al. 2004; Haglund et al. 2006; Grudzien et al. 2007; Weinshenker 2008; Grinberg et al. 2009; Simic et al. 2009; Braak and Del Tredici 2011; Elobeid et al. 2011; Vana et al. 2011; Trillo et al. 2013). The long and poorly myelinated axons of these nuclei might be capable of reverting to an earlier and less well differentiated state with a higher degree of tau phosphorylation more readily than heavily myelinated axons.


Locus Coeruleus Initial Axon Segment Astrocytic Process Pathological Material Proximal Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alonso AC, Li B, Grundke-Iqbal I, Iqbal K (2008) Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr Alzheimer Res 5:375–384PubMedCrossRefGoogle Scholar
  2. Ashford JW, Soultanian NS, Zhang SX, Geddes JW (1998) Neuropil threads are collinear with MAP2 immunostaining in neuronal dendrites of Alzheimer brain. J Neuropathol Exp Neurol 57:972–978PubMedCrossRefGoogle Scholar
  3. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 103:26–35PubMedCrossRefGoogle Scholar
  4. Ballatore C, Lee VMY, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 8:663–672PubMedCrossRefGoogle Scholar
  5. Bancher C, Brunner C, Lassmann H et al (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99PubMedCrossRefGoogle Scholar
  6. Benarroch EE (2009) The locus ceruleus norepinephrine system. Functional organization and potential clinical significance. Neurology 17:1699–1704CrossRefGoogle Scholar
  7. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2004) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739:216–223CrossRefGoogle Scholar
  8. Bobinski M, Wegiel J, Tarnawski M et al (1998) Duration of neurofibrillary changes in the hippocampal pyramidal neurons. Brain Res 799:156–158PubMedCrossRefGoogle Scholar
  9. Braak H, Braak E (1991b) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1:213–216PubMedCrossRefGoogle Scholar
  10. Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181PubMedCrossRefGoogle Scholar
  11. Braak H, Del Tredici K (2012) Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 25:708–714PubMedCrossRefGoogle Scholar
  12. Braak H, Alafuzoff I, Arzberger T et al (2006a) Staging of Alzheimer’s disease-associated neurofibrillary pathology using paraffin sections and immunohistochemistry. Acta Neuropathol 112:389–404PubMedCentralPubMedCrossRefGoogle Scholar
  13. Brunden KR, Trojanowski JQ, Lee VMY (2008) Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments. J Alzheimers Dis 14:393–399PubMedCentralPubMedGoogle Scholar
  14. Busch C, Bohl J, Ohm TG (1997) Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol Aging 18:401–406PubMedCrossRefGoogle Scholar
  15. Campbell SK, Switzer RC, Martin TL (1987) Alzheimer’s plaques and tangles: a controlled and enhanced silver-staining method. Soc Neurosci Abstr 13:678Google Scholar
  16. Chan-Palay V, Asan E (1989) Alterations in catecholamine neurons of the locus coeruleus in senile dementia of the Alzheimer type and in Parkinson’s disease with and without dementia and depression. J Comp Neurol 287:373–392PubMedCrossRefGoogle Scholar
  17. Ding H, Johnson GV (2008) The last tangle of tau. J Alzheimers Dis 14:441–447PubMedCentralPubMedGoogle Scholar
  18. Elobeid A, Soininen H, Alafuzoff I (2011) Hyperphosphorylated tau in young and middle-aged subjects. Acta Neuropathol 123:97–104PubMedCentralPubMedCrossRefGoogle Scholar
  19. Farkas E, Luiten PGM (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64:575–611PubMedCrossRefGoogle Scholar
  20. Gallyas F (1971) Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19:1–8PubMedGoogle Scholar
  21. Garcia-Sierra F, Ghoshal N, Quinn B et al (2003) Conformational changes and truncation of tau protein during tangle evolution in Alzheimer’s disease. J Alzheimer’s disease 5:65–77Google Scholar
  22. German DC, White CL, Sparkman DR (1987) Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience 21:305–312PubMedCrossRefGoogle Scholar
  23. German DC, Manaye KF, White CL III et al (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676PubMedCrossRefGoogle Scholar
  24. Grinberg LT, Rüb U, Ferretti REL et al (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35:406–416PubMedCrossRefGoogle Scholar
  25. Grudzien A, Shaw P, Weintraub S et al (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28:327–335PubMedCrossRefGoogle Scholar
  26. Haglund M, Sjöbeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathology 26:528–532PubMedCrossRefGoogle Scholar
  27. Hertz L (1989) Is Alzheimer’s disease an anterograde degeneration, originating in the brainstem, and disrupting metabolic interactions between neurons and glial cells? Brain Res Rev 14:335–353PubMedCrossRefGoogle Scholar
  28. Higuchi M, Lee MY, Trojanowski JQ (2002) Tau and axonopathy in neurodegenerative disorders. NeuroMol Med 2:131–150CrossRefGoogle Scholar
  29. Hof PR, Bussière T, Gold G et al (2003) Stereologic evidence for persistence of viable neurons in layer II of the entorhinal cortex and the CA1 field in Alzheimer disease. J Neuropathol Exp Neurol 62:55–67PubMedGoogle Scholar
  30. Iqbal K, Liu F, Gong CX et al (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69PubMedCentralPubMedCrossRefGoogle Scholar
  31. Ittner A, Ke JD, van Eersel J et al (2011) Brief update on different roles of tau in neurodegeneration. IUBMB Life 63:495–502PubMedCrossRefGoogle Scholar
  32. Köpke E, Tung YC, Shaikh S et al (1993) Microtubule-associated protein tau – abnormal phosphorylation of a non-paired helical filament pool in Alzheimer’s disease. J Biol Chem 268:24374–24384PubMedGoogle Scholar
  33. Kovacech B, Skrabana R, Novak M (2010) Transition of tau protein from disordered to misordered in Alzheimer’s disease. Neurodegener Dis 7:24–27PubMedCrossRefGoogle Scholar
  34. Lasagna-Reeves C, Castillo-Carranza D, Sengupta U et al (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 26:1946–1959PubMedCentralPubMedCrossRefGoogle Scholar
  35. Li B, Chohan MO, Grundke-Iqbal I, Iqbal K (2007) Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol 113:501–511PubMedCentralPubMedCrossRefGoogle Scholar
  36. Maeda S, Sahara N, Saito Y et al (2007) Granular tau oligomers as intermediates of tau filaments. Biochemistry 46:3856–3861PubMedCrossRefGoogle Scholar
  37. Mandelkow E, von Bergen M, Biernat J, Mandelkow EM (2007) Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 17:83–90PubMedCrossRefGoogle Scholar
  38. Mann DM (1983) The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system. Mech Ageing Dev 23:73–94PubMedCrossRefGoogle Scholar
  39. Mann DMA, Yates PO, Hawkes J (1982) The noradrenergic system in Alzheimer and multi-infarct dementias. J Neurol Neurosurg Psychiatry 45:113–119PubMedCentralPubMedCrossRefGoogle Scholar
  40. Merino-Serrais P, Benavides-Piccione R, Blazquez-Llorca L et al (2013) The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease. Brain 136:1913–1928PubMedCentralPubMedCrossRefGoogle Scholar
  41. Mesulam MM, Shaw P, Mash D, Weintraub S (2004) Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 55:815–828PubMedCrossRefGoogle Scholar
  42. Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58:188–197PubMedCrossRefGoogle Scholar
  43. Mufson EJ, Ward S, Binder L (2013) Prefibrillar tau oligomers in mild cognitive impairment and Alzheimer’s disease. Neurodegener Dis 13:151–153PubMedCrossRefGoogle Scholar
  44. Munoz DG, Wang D (1992) Tangle-associated neuritic clusters. A new lesion in Alzheimer’s disease and aging suggests that aggregates of dystrophic neurites are not necessarily associated with beta/A4. Am J Pathol 140:1167–1178PubMedCentralPubMedGoogle Scholar
  45. Pamphlett R (2014) Uptake of environmental toxicants by the locus ceruleus. A potential trigger for enruodegenerative, demyelinating and psychiatric disorders. Med Hypotheses 82:97–104PubMedCrossRefGoogle Scholar
  46. Parvizi J, van Hoesen GW, Damasio A (2001) The selective vulnerability of brainstem nuclei to Alzheimer’s disease. Ann Neurol 49:53–66PubMedCrossRefGoogle Scholar
  47. Rüb U, Del Tredici K, Schultz C et al (2000) The evolution of Alzheimer’s disease-related cytoskeletal pathology in the human raphe nuclei. Neuropathol Appl Neurobiol 26:553–557PubMedCrossRefGoogle Scholar
  48. Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223PubMedCrossRefGoogle Scholar
  49. Sassin I, Schultz C, Thal DR et al (2000) Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol 100:259–269PubMedCrossRefGoogle Scholar
  50. Serrano-Pozo A, Frosch M, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189PubMedCentralPubMedCrossRefGoogle Scholar
  51. Simic G, Stanic G, Mladinov M et al (2009) Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neurobiol 35:532–554PubMedCentralPubMedCrossRefGoogle Scholar
  52. Stokin GB, Goldstein LSB (2006) Axonal transport and Alzheimer’s disease. Ann Rev Biochem 75:607–627PubMedCrossRefGoogle Scholar
  53. Streit WJ, Braak H, Xue QS, Bechmann I (2009) Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 118:475–485PubMedCentralPubMedCrossRefGoogle Scholar
  54. Streit WJ, Xue QS, Braak H, Del Tredici K (2014) Presence of severe neuroinflammation does not intensify neurofibrillary degeneration in human brain. Glia 62:96–105PubMedCrossRefGoogle Scholar
  55. Thies E, Mandelkow EM (2007) Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci 27:2896–2907PubMedCrossRefGoogle Scholar
  56. Tian H, Davidowitz E, Lopez P et al (2013) Trimeric tau is toxic to human neuronal cells at low nanomolar concentrations. Int J Cell Biol 2013, 260787PubMedCentralPubMedCrossRefGoogle Scholar
  57. Tomlinson BE, Irving D, Blessed G (1981) Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 49:419–428PubMedCrossRefGoogle Scholar
  58. Trillo L, Das D, Hsieh W et al (2013) Ascending monoaminergic systems alterations in Alzheimer’s disease, translating basic science into clinical care. Neurosci Biobehav Rev 37:1363–1379PubMedCrossRefGoogle Scholar
  59. Uchihara T, Nakamura A, Yamazaki M, Mori O (2001) Evolution from pretangle neurons to neurofibrillary tangles monitored by thiazin red combined with Gallyas method and double immunofluorescence. Acta Neuropathol 101:535–539PubMedGoogle Scholar
  60. Uchihara T, Shibuya K, Nakamura A, Yagishita S (2005) Silver stains distinguish tau-positive structures in corticobasal degeneration/progressive supranuclear palsy and in Alzheimer’s disease – comparison between Gallyas and Campbell-Switzer methods. Acta Neuropathol 109:299–305PubMedCrossRefGoogle Scholar
  61. Vana L, Kanaan NM, Ugwu IC et al (2011) Progression of tau pathology in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. Am J Pathol 179:2533–2550PubMedCentralPubMedCrossRefGoogle Scholar
  62. Velasco ME, Smith MA, Siedlak SI et al (1998) Striation is the characteristic neuritic abnormality in Alzheimer disease. Brain Res 813:329–333PubMedCrossRefGoogle Scholar
  63. von Bergen M, Barghorn S, Biernat J et al (2005) Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta 1739:158–166CrossRefGoogle Scholar
  64. Weaver CL, Espinoza M, Kress Y, Davies P (2000) Conformational change as one of the earliest alterations of tau in Alzheimer’s disease. Neurobiol Aging 21:719–727PubMedCrossRefGoogle Scholar
  65. Weinshenker D (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5:342–345PubMedCrossRefGoogle Scholar
  66. Whitehouse PJ, Price DL, Clark AW et al (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126PubMedCrossRefGoogle Scholar
  67. Whitehouse PJ, Struble RG, Hedreen JC et al (1985) Alzheimer’s disease and related dementias: selective involvement of specific neuronal systems. CRC Crit Rev Clin Neurobiol 1:319–339PubMedGoogle Scholar
  68. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341PubMedCrossRefGoogle Scholar
  69. Zweig RM, Ross CA, Hedreen JC (1988) The neuropathology of aminergic nuclei in Alzheimer’s disease. Ann Neurol 24:233–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Heiko Braak
    • 1
  • Kelly Del Tredici
    • 1
  1. 1.Zentrum f. Biomed. Forschung AG Klinische Neuroanatomie/Abteilung NeurologieUniversität UlmUlmGermany

Personalised recommendations