Other Examples

  • Marek Jarnicki
  • Peter Pflug
Part of the Springer Monographs in Mathematics book series (SMM)

Summary

It is not surprising that there are many examples of nowhere differentiable functions that are outside the above three main types discussed so far. We will present only two of them.

References

  1. [AFS09]
    E. de Amo, J. Fernández-Sánchez, Takagi’s function revisited from an arithmetical point of view. Int. J. Pure Appl. Math. 54, 407–427 (2009)MathSciNetMATHGoogle Scholar
  2. [AK12]
    P.C. Allaart, K. Kawamura, The Takagi function: a survey. Real Anal. Exch. 37, 1–54 (2011/2012)Google Scholar
  3. [AK06a]
    F.A. Albiac, N.J. Kalton, in Topics in Banach Space Theory. Graduate Texts in Mathematics (Springer, New York, 2006)Google Scholar
  4. [AK06b]
    P.C. Allaart, K. Kawamura, Extreme values of some continuous nowhere differentiable functions. Math. Proc. Camb. Philos. Soc. 140, 269–295 (2006)MathSciNetCrossRefGoogle Scholar
  5. [AK10]
    P.C. Allaart, K. Kawamura, The improper infinite derivatives of Takagi’s nowhere-differentiable function. J. Math. Anal. Appl. 372, 656–665 (2010)MathSciNetCrossRefGoogle Scholar
  6. [All13]
    P.C. Allaart, Level sets of signed Takagi functions. arXiv:1209.6120v2 (2013)MathSciNetCrossRefGoogle Scholar
  7. [Als81]
    J. Alsina, The Peano curve of Schoenberg is nowhere differentiable. J. Approx. Theory 33, 28–42 (1981)MathSciNetCrossRefGoogle Scholar
  8. [Amp06]
    A.M. Ampère, Recherches sur quelques points de la théorie des fonctions dérivées qui condiusent à une nouvelle démonstration de la série de Taylor, et à l’expression finie des termes qu’on néglige lorsqu’on arrête cette série à un terme quelconque. J. École Polytech. 6, 148–181 (1806)Google Scholar
  9. [And87]
    D. André, Solution directe du problème résolu par M. Bertrand. C. R. Acad. Sci. Paris 105, 436–437 (1887)MATHGoogle Scholar
  10. [Ani93]
    V. Anisiu, Porosity and continuous, nowhere differentiable functions. Ann. Fac. Sci. Toulouse 2, 5–14 (1993)MathSciNetCrossRefGoogle Scholar
  11. [BA36]
    E.G. Begle, W.L. Ayres, On Hildebrandt’s example of a function without a finite derivative. Am. Math. Mon. 43, 294–296 (1936)CrossRefGoogle Scholar
  12. [Bab84]
    Y. Baba, On maxima of Takagi–van der Waerden functions. Proc. Am. Math. Soc. 91, 373–376 (1984)MathSciNetCrossRefGoogle Scholar
  13. [Ban22]
    S. Banach, Sur les fonctions dérivées des fonctions mesurables. Fundam. Math. 3, 128–132 (1922)CrossRefGoogle Scholar
  14. [Ban31]
    S. Banach, Über die bairesche Kategorie gewisser Funktionenmengen. Stud. Math. 3, 174–179 (1931)CrossRefGoogle Scholar
  15. [BB05]
    B. Bailland, H. Bourget, Correspondence d’Hermite et de Stieltjes, vol. 2 (Gauthier–Villas, Paris, 1905)Google Scholar
  16. [BD92]
    A. Baouche, S. Dubuc, La non-dérivabilité de la fonction de Weierstrass. Enseign. Math. 38, 89–94 (1992)MathSciNetMATHGoogle Scholar
  17. [BD94]
    A. Baouche, S. Dubuc, A unified approach for nondifferentiable functions. J. Math. Anal. Appl. 182, 134–142 (1994)MathSciNetCrossRefGoogle Scholar
  18. [BE81]
    B.C. Berndt, R.J. Evans, The determination of Gauss sums. Bull. Am. Math. Soc. 5, 107–129 (1981)MathSciNetCrossRefGoogle Scholar
  19. [Beh49]
    F.A. Behrend, Some remarks on the construction of continuous non-differentiable functions. Proc. Lond. Math. Soc. 50, 463–481 (1949)MathSciNetMATHGoogle Scholar
  20. [Bel71]
    A.S. Belov, Everywhere divergent trigonometric series (Russian). Mat. Sb. (N.S.) 85(127), 224–237 (1971)Google Scholar
  21. [Bel73]
    A.S. Belov, A study of certain trigonometric series (Russian). Mat. Zametki 13, 481–492 (1973)MathSciNetGoogle Scholar
  22. [Bel75]
    A.S. Belov, The sum of a lacunary series (Russian). Trudy Moskov. Mat. Obšč 33, 107–153 (1975)MathSciNetMATHGoogle Scholar
  23. [Ber03]
    E.I. Berezhnoi, The subspace of \(\mathcal{C}[0,1]\) consisting of functions having finite one-sided derivatives nowhere. Math. Notes 73, 321–327 (2003)MathSciNetCrossRefGoogle Scholar
  24. [Bes24]
    A.S. Besicovitch, An investigation of continuous functions in connection with the question of their differentiability (Russian). Mat. Sb. 31, 529–556 (1924)Google Scholar
  25. [BKY06]
    R. Balasubramanian, S. Kanemitsu, M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis II. Publ. Math. Debrecen 69, 1–16 (2006)MATHGoogle Scholar
  26. [Boa69]
    P. van Emde Boas, Nowhere differentiable continuous functions. Technical Report, Mathematisch Centrum Amsterdam (1969)MATHGoogle Scholar
  27. [Boa10]
    R.P. Boas, in Invitation to Complex Analysis (Second Edition Revised by Harold P. Boas). MAA Textbooks (Mathematical Association of America, Washington, DC, 2010)Google Scholar
  28. [Bob05]
    J. Bobok, On a space of Besicovitch functions. Real Anal. Exch. 30, 173–182 (2005)MathSciNetCrossRefGoogle Scholar
  29. [Bob07]
    J. Bobok, Infinite dimensional Banach space of Besicovitch functions. Real Anal. Exch. 32, 319–333 (2007)MathSciNetCrossRefGoogle Scholar
  30. [Bob14]
    J. Bobok, On spaceability of Besicovitch functions. Preprint (2014)Google Scholar
  31. [Bou04]
    N. Bourbaki, Functions of a Real Variable (Springer, Berlin, 2004)CrossRefGoogle Scholar
  32. [BR74]
    P. Bois-Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen. J. Reine Angew. Math. 79, 21–37 (1874)MathSciNetMATHGoogle Scholar
  33. [Bro08]
    T.J.I’a. Bromwich, An Introduction to the Theory of Infinite Series (Macmillan, London/New York, 1908)Google Scholar
  34. [Bru84]
    A. Bruckner, Some new simple proofs of old difficult theorems. Real Anal. Exch. 9, 74–75 (1984)MATHGoogle Scholar
  35. [Brž49]
    V.F. Bržečka, On Bolzano’s function (Russian). Uspehi Matem. Nauk (N.S.) 2(30), 15–21 (1949)Google Scholar
  36. [Bus52]
    K.A. Bush, Continuous functions without derivatives. Am. Math. Mon. 59, 222–225 (1952)MathSciNetCrossRefGoogle Scholar
  37. [Can69]
    G. Cantor, Über die einfachen Zahlensysteme. Schlömilch Z. XIV, 121–128 (1869)Google Scholar
  38. [Cat03]
    F.S. Cater, Constructing nowhere differentiable functions from convex functions. Real Anal. Exch. 28, 617–621 (2002/03)Google Scholar
  39. [Cat83]
    F.S. Cater, A typical nowhere differentiable function. Canad. Math. Bull. 26, 149–151 (1983)MathSciNetCrossRefGoogle Scholar
  40. [Cat84]
    F.S. Cater, On van der Waerden’s nowhere differentiable function. Am. Math. Mon. 91, 307–308 (1984)MathSciNetCrossRefGoogle Scholar
  41. [Cat86]
    F.S. Cater, An elementary proof of a theorem on unilateral derivatives. Can. Math. Bull. 29, 341–343 (1986)MathSciNetCrossRefGoogle Scholar
  42. [Cat94]
    F.S. Cater, Remark on a function without unilateral derivatives. J. Math. Anal. Appl. 182, 718–721 (1994)MathSciNetCrossRefGoogle Scholar
  43. [Cel90]
    M.Ch. Cellérier, Note sur les principes fondamentaux de l’analyse. Darboux Bull. 14, 142–160 (1890)MATHGoogle Scholar
  44. [Dar75]
    G. Darboux, Mémoir sur les fonctions discontinues. Ann. Sci. École Norm. Sup. Sér. 2 4, 57–112 (1875)CrossRefGoogle Scholar
  45. [Dar79]
    G. Darboux, Addition au mémoire sur les fonctions discontinues. Ann. Sci. École Norm. Sup. Sér. 2 8, 195–202 (1879)CrossRefGoogle Scholar
  46. [Den15]
    A. Denjoy, Mémoire sur les nombres dérivés des fonctions continues. J. Math. 1, 105–240 (1915)MATHGoogle Scholar
  47. [DFK89]
    W.F. Darsow, M.J. Frank, H.-H. Kairies, Errata: “Functional equations for a function of van der Waerden type”. Rad. Mat. 5, 179–180 (1989)MathSciNetMATHGoogle Scholar
  48. [Din77]
    U. Dini, Su alcune funzioni che in tutto un intervallo non hanno mai derivata. Annali di Matematica 8, 122–137 (1877)MATHGoogle Scholar
  49. [Din92]
    U. Dini, Grundlagen für eine Theorie der Functionen einer veränderlichen reelen Grösse (B.G. Teubner, Leipzig, 1892)MATHGoogle Scholar
  50. [Dol67]
    E.P. Dolženko, Boundary properties of arbitrary functions. Izv. Akad. Nauk SSSR Ser. Mat. 31, 3–14 (1967)MathSciNetGoogle Scholar
  51. [DS00]
    L. Dirichlet, P.L. Seidel, Die Darstellung ganz willkürlicher Functionen durch Sinus- und Cosinusreihen (Wilhelm Engelmann, Leipzig, 1900)MATHGoogle Scholar
  52. [EG]
    P. Enflo, V.I. Gurariy, On lineability and spaceability of sets in function spaces. PreprintGoogle Scholar
  53. [EGSS14]
    P. Enflo, V.I. Gurariy, J.B. Seoane-Sepúlveda, Some results and open questions on spaceability in function spaces. Trans. Am. Math. Soc. 366, 611–625 (2014)MathSciNetCrossRefGoogle Scholar
  54. [EM14]
    A. Eskenazis, K. Makridis, Topological genericity of nowhere differentiable functions in the disc and polydisc algebras. J. Math. Anal. Appl. 420, 435–446 (2014)MathSciNetCrossRefGoogle Scholar
  55. [Esk14]
    A. Eskenazis, Topological genericity of nowhere differentiable functions in the disc algebra. Arch. Math. 103, 85–92 (2014)MathSciNetCrossRefGoogle Scholar
  56. [Eul48]
    L. Euler, Introductio in Analysin in Infinitorum (Appud Marcum-Michaelem Bousquet & Socios, Lausanne, 1748)Google Scholar
  57. [Fab07]
    G. Faber, Einfaches Beispiel einer stetigen nirgends differentiierbaren Funktion. Jahresber. Deutschen Math. Verein. 16, 538–540 (1907)MATHGoogle Scholar
  58. [Fab08]
    G. Faber, Über stetige Funktionen. Math. Ann. 66, 81–94 (1908)MathSciNetCrossRefGoogle Scholar
  59. [Fab10]
    G. Faber, Über stetige Funktionen. Math. Ann. 69, 372–443 (1910)MathSciNetCrossRefGoogle Scholar
  60. [FGK99]
    V.P. Fonf, V.I. Gurariy, M.I. Kadets, An infinite-dimensional subspace of \(\mathcal{C}[0,1]\) consisting of nowhere differentiable functions. C. R. Acad. Bulg. 52, 13–16 (1999)MathSciNetMATHGoogle Scholar
  61. [Fil69]
    L. Filipczak, Exemple d’une fonction continue privée symétrique partout. Colloq. Math. 20, 249–253 (1969)MathSciNetCrossRefGoogle Scholar
  62. [Gar70]
    K.M. Garg, On a residual set of continuous functions. Czechoslov. Math. J. 20, 537–543 (1970)MathSciNetMATHGoogle Scholar
  63. [Ger70]
    J. Gerver, The differentiability of the Riemann function at certain rational multiples of π. Am. J. Math. 92, 33–55 (1970)Google Scholar
  64. [Ger71]
    J. Gerver, More on the differentiability of the Riemann function. Am. J. Math. 93, 33–41 (1971)MathSciNetCrossRefGoogle Scholar
  65. [Gir94]
    R. Girgensohn, Nowhere differentiable solutions of a system of functional equations. Aequationes Math. 47, 89–99 (1994)MathSciNetCrossRefGoogle Scholar
  66. [Gur67]
    V.I. Gurariy, Subspaces of differentiable functions in the space of continuous functions (Russian). Funktsii Funktsional. Anal. Prilozhen 4, 161–121 (1967)Google Scholar
  67. [Gur91]
    V.I. Gurariy, Linear spaces composed of everywhere nondifferentiable functions (Russian). C. R. Acad. Bulg. Sci. 44, 13–16 (1991)MathSciNetGoogle Scholar
  68. [Hah17]
    H. Hahn, Über stetige Funktionen ohne Ableitung. Deutsche Math. Ver. 26, 281–284 (1917)MATHGoogle Scholar
  69. [Hai76]
    B. Hailpern, Continuous non-differentiable functions. Pi Mu Epsilon J. 6, 249–260 (1976)MathSciNetMATHGoogle Scholar
  70. [Han34]
    E.H. Hanson, A new proof of a theorem of Denjoy, Young, and Saks. Bull. Am. Math. Soc. 40, 691–694 (1934)MathSciNetCrossRefGoogle Scholar
  71. [Har16]
    G.H. Hardy, Weierstrass’s non-differentiable function. Trans. Am. Math. Soc. 17, 301–325 (1916)MathSciNetMATHGoogle Scholar
  72. [Hat88a]
    M. Hata, On Weierstrass’s non-differentiable function. C. R. Acad. Sci. Paris 307, 119–123 (1988)MathSciNetMATHGoogle Scholar
  73. [Hat88b]
    M. Hata, Singularities of the Weierstrass type functions. J. Anal. Math. 51, 62–90 (1988)MathSciNetCrossRefGoogle Scholar
  74. [Hat91]
    M. Hata, Topological aspects of self-similar sets and singular functions, in Fractal Geometry and Analysis, ed. by J. Bélais, S. Dubuc (Kluwer, Dordrecht, 1991), pp. 255–276CrossRefGoogle Scholar
  75. [Hat94]
    M. Hata, Correction to: “Singularities of the Weierstrass type functions” [J. Anal. Math. 51 (1988)]. J. Anal. Math. 64, 347 (1994)MathSciNetCrossRefGoogle Scholar
  76. [Her79]
    K. Hertz, On functions having no differential quotient (Polish). Diary of the Society of Sciences in Paris 11, 1–24 (1879)Google Scholar
  77. [Hil33]
    T.H. Hildebrandt, A simple continuous function with a finite derivative at no point. Am. Math. Mon. 40, 547–548 (1933)MATHGoogle Scholar
  78. [Hob26]
    E.W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier Series, vol. II (Cambridge University Press, Cambridge, 1926)MATHGoogle Scholar
  79. [Hov09]
    R.I. Hovsepyan, On trigonometric series and primitive functions. J. Contemp. Math. Anal. Armen. Acad. Sci. 44, 205–211 (2009)MathSciNetMATHGoogle Scholar
  80. [HSY92]
    B.R. Hunt, T. Sauer, J. Yorke, Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Am. Math. Soc. 27, 217–238 (1992)MathSciNetCrossRefGoogle Scholar
  81. [Hun94]
    B.R. Hunt, The prevalence of continuous nowhere differentiable functions. Proc. Am. Math. Soc. 122, 711–717 (1994)MathSciNetCrossRefGoogle Scholar
  82. [HW41]
    P. Hartman, A. Wintner, On the law of the iterated logarithm. Am. J. Math. 63, 169–176 (1941)CrossRefGoogle Scholar
  83. [HW79]
    G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers (Clarendon, Oxford, 1979)MATHGoogle Scholar
  84. [HY84]
    M. Hata, M. Yamaguti, The Takagi function and its generalization. Japan J. Appl. Math. 1, 183–199 (1984)MathSciNetCrossRefGoogle Scholar
  85. [Ita81]
    S. Itatsu, Differentiability of Riemann’s function. Proc. Jpn. Acad. Ser. A Math. Sci. 57, 492–495 (1981)MathSciNetCrossRefGoogle Scholar
  86. [Jar22]
    V. Jarník, O funkci Bolzanově. Časopis pro pěstování matematiky a fysiky 51, 248–264 (1922)Google Scholar
  87. [Jar33]
    V. Jarník, Über die Differenzierbarkeit stetiger Funktionen. Fundam. Math. 21, 48–58 (1933)CrossRefGoogle Scholar
  88. [Jar34]
    V. Jarník, Sur les nombres dérivés approximatifs. Fundam. Math. 22, 4–16 (1934)CrossRefGoogle Scholar
  89. [Jar81]
    V. Jarník, On Bolzano’s function, in Bolzano and the Foundations of Mathematical Analysis (On the Occasion of the Bicentennial of Bernard Bolzano) (Society of Czechoslovak Mathematicians and Physicists, Prague, 1981), pp. 67–81MATHGoogle Scholar
  90. [Joh10]
    J. Johnsen, Simple proofs of nowhere-differentiability for Weierstrass’s function and cases of slow growth. J. Fourier Anal. Appl. 16, 17–33 (2010)MathSciNetCrossRefGoogle Scholar
  91. [JRMFSS13]
    P. Jiménez-Rodriguez, G.A. Muñoz-Fernández, J.B. Seoane-Sepúlveda, On Weierstrass monsters and lineability. Bull. Belg. Math. Soc. Simon Stevin 20, 577–586 (2013)MathSciNetMATHGoogle Scholar
  92. [Kac59]
    M. Kac, in Statistical Independence in Probability, Analysis and Number Theory. The Carus Mathematical Monographs, vol. 12 (Wiley, New York, 1959)Google Scholar
  93. [Kal73]
    P. Kalášek, Note to a paper by V. Petrůva (Czech). Časopis Pěst. Mat. 98, 156–158 (1973)Google Scholar
  94. [Kat91]
    H. Katsuura, Nowhere differentiable functions—an application of contraction mappings. Am. Math. Mon. 98, 411–416 (1991)MathSciNetCrossRefGoogle Scholar
  95. [KDF88]
    H.-H. Kairies, W.F. Darsow, M.J. Frank, Functional equations for a function of van der Waerden type. Rad. Mat. 4, 361–374 (1988)MathSciNetMATHGoogle Scholar
  96. [Kie66]
    K. Kiesswetter, Ein einfaches Beispiel einer Funktion, welche überall stetig und nicht differenzierbar ist. Math. Phys. Semesterber. 13, 216–221 (1966)MathSciNetMATHGoogle Scholar
  97. [KK96]
    R. Kannan, C.K. Krueger, Advanced Analysis on the Real Line (Springer, Berlin, 1996)MATHGoogle Scholar
  98. [Kle02]
    F. Klein, Anwendung der Differential- und Integralrechnung auf Geometrie, eine Revision der Prinzipien (B.G. Teubner, Leipzig, 1902)MATHGoogle Scholar
  99. [Kno18]
    K. Knopp, Ein einfaches Verfahren zur Bildüng stetiger nirgends differenzierbarer Funktionen. Math. Z. 2, 1–26 (1918)MathSciNetCrossRefGoogle Scholar
  100. [Kob09]
    K. Kobayashi, On the critical case of Okamoto’s continuous non-differentiable functions. Proc. Jpn. Acad. 85, 101–104 (2009)MathSciNetCrossRefGoogle Scholar
  101. [Kôn87]
    N. Kôno, On generalized Takagi functions. Acta Math. Hung. 49, 315–324 (1987)MathSciNetCrossRefGoogle Scholar
  102. [Kos72]
    P. Kostyrko, On the symmetric derivative. Colloq. Math. 25, 265–267 (1972)MathSciNetCrossRefGoogle Scholar
  103. [Kow23]
    G. Kowalewski, Über Bolzanos nichtdifferenzierbare stetige Funktion. Acta Math. 44, 315–319 (1923)MathSciNetCrossRefGoogle Scholar
  104. [Krü07]
    M. Krüppel, On the extrema and the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 62, 41–59 (2007)MathSciNetMATHGoogle Scholar
  105. [Krü08]
    M. Krüppel, Takagi’s continuous nowhere differentiable function and binary digital sums. Rostock. Math. Kolloq. 63, 37–54 (2008)MathSciNetMATHGoogle Scholar
  106. [Krü10]
    M. Krüppel, On the improper derivatives of Takagi’s continuous nowhere differentiable function. Rostock. Math. Kolloq. 65, 3–13 (2010)MATHGoogle Scholar
  107. [KSZ48]
    M. Kac, R. Salem, A. Zygmund, A gap theorem. Trans. Am. Math. Soc. 63, 235–243 (1948)MathSciNetCrossRefGoogle Scholar
  108. [Kuc14]
    A. Kucharski, Math’s beautiful monsters; how a destructive idea paved the way to modern math. Nautilus Q. (11) (2014)Google Scholar
  109. [KV02]
    H.-H. Kairies, P. Volkmann, Ein Vektorraumisomorphismus vom Summentyp. Preprint, University of Karlsruhe (2002)Google Scholar
  110. [KY00]
    S. Kanemitsu, M. Yoshimoto, Euler products, Farey series and the Riemann hypothesis. Publ. Math. Debr. 56, 431–449 (2000)MATHGoogle Scholar
  111. [Lag12]
    J.C. Lagarias, The Takagi function and its properties, in Functions in Number Theory and Their Probabilistic Aspects (Research Institute of Mathematical Sciences, Kyoto, 2012), pp. 153–189MATHGoogle Scholar
  112. [Lan08]
    G. Landsberg, On the differentiability of continuous functions (Über die Differentiierbarkeit stetiger Funktionen). Jahresber. Deutschen Math. Verein. 17, 46–51 (1908)Google Scholar
  113. [Leb40]
    H. Lebesgue, Une fonction continue sans dérivée. Enseign. Math. 38, 212–213 (1939–1940)Google Scholar
  114. [Ler88]
    M. Lerch, Über die Nichtdifferentiirbarkeit gewisser Functionen. J. Math. 103, 126–138 (1888)Google Scholar
  115. [LM40]
    B. Levine, D. Milman, On linear sets in space C consisting of functions of bounded variation (Russian). Comm. Inst. Sci. Math. Mecan. Univ. Kharkoff Soc. Math. Kharkoff IV. Ser. 16, 102–105 (1940)Google Scholar
  116. [LM14]
    D. Li, J. Miao, Generalized Kiesswetter’s functions. Preprint (2014)Google Scholar
  117. [Lut86]
    W. Luther, The differentiability of Fourier gap series and “Riemann’s example” of a continuous, nondifferentiable function. J. Approx. Theory 48, 303–321 (1986)MathSciNetCrossRefGoogle Scholar
  118. [Lyc40]
    R.T. Lyche, Une fonction continue sans dérivée. Enseign. Math. 38, 208–211 (1939/1940)Google Scholar
  119. [Mal84]
    J. Malý, Where the continuous functions without unilateral derivatives are typical. Trans. Am. Math. Soc. 283, 169–175 (1984)MathSciNetCrossRefGoogle Scholar
  120. [Mal09]
    L. Maligranda, Karol Hertz (1843–1904) — absolwent Szkoły Głównej Warszawskiej (Polish). Antiquit. Math. 3, 65–87 (2009)Google Scholar
  121. [Mar35]
    J. Marcinkiewicz, Sur les nombres dérivés. Fundam. Math. 24, 305–308 (1935)Google Scholar
  122. [Mau79]
    R.D. Mauldin, The set of continuous nowhere differentiable functions. Pac. J. Math. 83, 199–205 (1979)MathSciNetCrossRefGoogle Scholar
  123. [Maz31]
    S. Mazurkiewicz, Sur les fonctions non dérivables. Stud. Math. 3, 92–94 (1931)CrossRefGoogle Scholar
  124. [McC53]
    J. McCarthy, An everywhere continuous nowhere differentiable function. Am. Math. Mon. 60, 709 (1953)MathSciNetCrossRefGoogle Scholar
  125. [MG84]
    D.P. Minassian, J.W. Gaisser, A simple Weierstrass function. Am. Math. Mon. 91, 254–256 (1984)MathSciNetCrossRefGoogle Scholar
  126. [Mik56]
    M. Mikolás, Construction des familles de fonctions partout continues non dérivables. Acta Sci. Math. 17, 49–62 (1956)MathSciNetMATHGoogle Scholar
  127. [Moh80]
    E. Mohr, Wo ist die Riemannsche Funktion \(\sum \limits _{n=1}^{\infty }\frac{\sin n^{2}x} {n^{2}}\) nichtdifferenzierbar? Ann. Mat. Pura Appl. 123, 93–104 (1980)MathSciNetCrossRefGoogle Scholar
  128. [Mor38]
    A.P. Morse, A continuous function with no unilateral derivatives. Trans. Am. Math. Soc. 44, 496–507 (1938)MathSciNetCrossRefGoogle Scholar
  129. [Mor87]
    M. Morayne, On differentiability of Peano type functions. Colloq. Math. 53, 129–132 (1987)MathSciNetCrossRefGoogle Scholar
  130. [Muk34]
    B.N. Mukhopadhyay, On some generalisations of Weierstraß  nondifferentiable functions. Bull. Calcutta M.S. 25, 179–184 (1934)Google Scholar
  131. [Oka05]
    H. Okamoto, A remark on continuous, nowhere differentiable functions. Proc. Jpn. Acad. 81, 47–50 (2005)MathSciNetCrossRefGoogle Scholar
  132. [OMS09]
    K. Oldham, J. Myland, J. Spanier, An Atlas of Functions (Springer, Berlin, 2009)CrossRefGoogle Scholar
  133. [OW07]
    H. Okamoto, M. Wunsch, A geometric construction of continuous, strictly increasing singular functions. Proc. Jpn. Acad. 83, 114–118 (2007)MathSciNetCrossRefGoogle Scholar
  134. [Pas14]
    M. Pasch, Veränderliche und Funktion (B.G. Teubner, Leipzig/Berlin, 1914)MATHGoogle Scholar
  135. [Pep28]
    E.D. Pepper, On continuous functions without a derivative. Fundam. Math. 12, 244–253 (1928)CrossRefGoogle Scholar
  136. [Per16]
    J.B. Perrin, Atoms (D. van Nostrand Company, 1916)Google Scholar
  137. [Per27]
    F.W. Perkins, An elementary example of a continuous non-differentiable function. Am. Math. Mon. 34, 476–478 (1927)MathSciNetCrossRefGoogle Scholar
  138. [Per29]
    F.W. Perkins, A note on certain continuous non-differentiable functions. Bull. Am. Math. Soc. 35, 239–247 (1929)MathSciNetCrossRefGoogle Scholar
  139. [Pet20]
    K. Petr, Example of a continuous function without derivative at any point (Czech). Časopis Pěst. Mat. 49, 25–31 (1920)Google Scholar
  140. [Pet58]
    V. Petrův, On the symmetric derivative of continuous functions (Czech). Časopis Pěst. Mat. 83, 336–342 (1958)MathSciNetGoogle Scholar
  141. [Poi99]
    H. Poincaré, La logique et l’intuition dans la sciences mathématique et dans l’enseigment. Enseign. Math. 1, 157–162 (1899)MATHGoogle Scholar
  142. [Pom92]
    C. Pommerenke, in Boundary Behaviour of Conformal Maps. Grundlehren Der Mathematischen Wissenschaften, vol. 299 (Springer, Berlin, 1992)Google Scholar
  143. [Por19]
    M.B. Porter, Derivativeless continuous functions. Bull. Am. Math. Soc. 25, 176–180 (1919)MathSciNetCrossRefGoogle Scholar
  144. [PT84]
    P.P. Petrushev, S.L. Troyanski, On the Banach–Mazur theorem on the universality of w[0, 1] (Russian). C. R. Acad. Bulg. Sci. 37, 283–285 (1984)Google Scholar
  145. [PV13]
    M. Pratsiovytyi, N. Vasylenko, Fractal properties of functions defined in terms of Q-representation. Int. J. Math. Anal. 7, 3155–3167 (2013)MathSciNetCrossRefGoogle Scholar
  146. [Rha57a]
    G. de Rham, Sur quelques courbes définies par des équations fonctionelles. Rend. Sem Mat. Univ. Torino 16, 101–113 (1957)Google Scholar
  147. [Rha57b]
    G. de Rham, Sur un exemple de fonction continue sans dérivée. Enseign. Math. 3, 71–72 (1957)MATHGoogle Scholar
  148. [RP95]
    L. Rodriguez-Piazza, Every separable Banach space is isometric to a space of continuous nowhere differentiable functions. Proc. Am. Math. Soc. 123, 3650–3654 (1995)MathSciNetCrossRefGoogle Scholar
  149. [RS02]
    R. Remmert, G. Schumacher, Funktionentheorie 2. Springer-Lehrbuch (Springer, Berlin/Heidelberg, 2002)MATHGoogle Scholar
  150. [Rud74]
    W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1974)MATHGoogle Scholar
  151. [Ryc23]
    K. Rychlik, Eine stetige nicht differenzierbare Funktion im Gebiete der Henselschen Zahlen. J. Math. 152, 178–179 (1923)MathSciNetMATHGoogle Scholar
  152. [Sag92]
    H. Sagan, An elementary proof that Schoenberg’s space-filling curve is nowhere differentiable. Math. Mag. 65, 125–128 (1992)MathSciNetCrossRefGoogle Scholar
  153. [Sag94]
    H. Sagan, Space-Filling Curves. Universitext (Springer, New York, 1994)CrossRefGoogle Scholar
  154. [Sak24]
    S. Saks, Sur les nombres derivées des fonctions. Fundam. Math. 5, 98–104 (1924)CrossRefGoogle Scholar
  155. [Sak32]
    S. Saks, On the functions of Besicovitch in the space of continuous functions. Fundam. Math. 19, 211–219 (1932)CrossRefGoogle Scholar
  156. [Sch38]
    I.J. Schoenberg, On the Peano curve of Lebesgue. Bull. Am. Math. Soc. 44, 8 (1938)MathSciNetCrossRefGoogle Scholar
  157. [Sie14a]
    W. Sierpiński, An arithmetic example of a continuous non-differentiable function (Polish). Wektor 3, 337–343 (1914)Google Scholar
  158. [Sie14b]
    W. Sierpiński, Sur deux problémes de la théorie des fonctions non dérivables. Bull. Int Acad. Sci. Cracovie 162–182 (1914)Google Scholar
  159. [Sie35]
    W. Sierpiński, Sur une propriété des fonctions quelconques d’une variable reéle. Fundam. Math. 25, 1–4 (1935)MathSciNetCrossRefGoogle Scholar
  160. [Sin27]
    A.N. Singh, On some new types of non-differentiable functions. Ann. Math. 28, 472–476 (1927)MathSciNetCrossRefGoogle Scholar
  161. [Sin28]
    A.N. Singh, On Bolzano’s non-differentiable function. Bull. Acad. Pol. A 1928, 191–200 (1928)MATHGoogle Scholar
  162. [Sin30]
    A.N. Singh, Arithmetic non-differentiable functions. Ann. Math. 31, 657–659 (1930)MathSciNetCrossRefGoogle Scholar
  163. [Sin35]
    A.N. Singh, The theory and construction of non-differentiable functions, in Squaring the Circle and Other Monographs. (Lucknow University Studies, Chelsea Publishing Company) (1935)Google Scholar
  164. [Sin41]
    A.N. Singh, On functions without one-sided derivatives. Proc. Benares Math. Soc. 3, 55–69 (1941)MathSciNetGoogle Scholar
  165. [Sin43]
    A.N. Singh, On functions without one-sided derivatives ii. Proc. Benares Math. Soc. 4, 95–108 (1943)MathSciNetMATHGoogle Scholar
  166. [Smi72]
    A. Smith, The differentiability of Riemann’s functions. Proc. Am. Math. Soc. 34, 463–468 (1972)MathSciNetMATHGoogle Scholar
  167. [Smi83]
    A. Smith, Correction to: “The differentiability of Riemann’s function” [Proc. Am. Math. Soc. 34 (1972)]. Proc. Am. Math. Soc. 89, 567–568 (1983)Google Scholar
  168. [Spu04]
    K.G. Spurrier, Continuous nowhere differentiable functions. Master’s thesis, South Carolina Honors College (2004)Google Scholar
  169. [SS86]
    A. Shidfar, K. Sabetfakhri, On the continuity of van der Waerden’s function in the Hölder sense. Am. Math. Mon. 93, 375–376 (1986)MATHGoogle Scholar
  170. [Ste99]
    E. Steinitz, Stetigkeit und Differentialquotient. Math. Ann. 52, 58–69 (1899)MathSciNetCrossRefGoogle Scholar
  171. [Sti14]
    T.J. Stieltjes, Quelques remarques à propos des dérivées d’une fonction d’une seule variable, in Œuvres Complètes de Thomas Jan Stieltjes, vol. I (Groningen, P. Noordhoff, 1914), pp. 67–72Google Scholar
  172. [Swi61]
    W.C. Swift, Simple constructions of nondifferentiable functions and space-filling curves. Am. Math. Mon. 68, 653–655 (1961)MathSciNetCrossRefGoogle Scholar
  173. [Tak03]
    T. Takagi, A simple example of the continuous function without derivative. Proc. Phys. Math. Soc. Jpn. 1, 176–177 (1903). See also: The Collected Papers of Teiji Takagi (Springer, New York, 1990), pp. 4–5Google Scholar
  174. [TH]
    A.L. Thomson, J.N. Hagler, Between a parabola and a nowhere differentiable place. PreprintGoogle Scholar
  175. [Thi03]
    J. Thim, Continuous nowhere differentiable functions. Master’s thesis, Luleå University of Technology (2003)Google Scholar
  176. [Vas13]
    N. Vasylenko, Nowhere differentiable Takagi function in problems and applications, in Fifth International Conference on Analytic Number Theory and Spatial Tessellations (2013), pp. 54–55Google Scholar
  177. [Vol1987]
    K. Volkert, Die Geschichte der pathologischen Funktionen. Ein Beitrag zur Entstehung der mathematischen Methodologie. Arch. Hist. Exact Sci. 37, 193–232 (1987)MathSciNetCrossRefGoogle Scholar
  178. [Vol1989]
    K. Volkert, Zur Differenzierbarkeit stetiger Funktionen — Ampère’s Beweis und seine Folgen. Arch. Hist. Exact Sci. 40, 37–112 (1989)MathSciNetCrossRefGoogle Scholar
  179. [Wae30]
    B.L. van der Waerden, Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion. Math. Z. 32, 474–475 (1930)MathSciNetCrossRefGoogle Scholar
  180. [Wei86]
    K. Weierstrass, Abhandlungen aus der Funktionenlehre (Julius Springer, Berlin, 1886)MATHGoogle Scholar
  181. [Wei95]
    K. Weierstrass, Mathematische Werke (Mayer & Müller, Berlin, 1895)Google Scholar
  182. [Wei23]
    K. Weierstrass, Briefe von K. Weierstrass an Paul du Bois-Reymond. Acta Math. 39, 199–225 (1923)Google Scholar
  183. [Wen00]
    L. Wen, A nowhere differentiable continuous function. Am. Math. Mon. 107, 450–453 (2000)MathSciNetCrossRefGoogle Scholar
  184. [Wen01]
    L. Wen, A nowhere differentiable continuous function constructed using Cantor series. Math. Mag. 74, 400–402 (2001)CrossRefGoogle Scholar
  185. [Wen02]
    L. Wen, A nowhere differentiable continuous function constructed by infinite products. Am. Math. Mon. 109, 378–380 (2002)MathSciNetCrossRefGoogle Scholar
  186. [Wie81]
    C. Wiener, Geometrische und analytische Untersuchung der Weierstrassschen Function. J. Reine Angew. Math. 90, 221–252 (1881)MathSciNetMATHGoogle Scholar
  187. [Wun52]
    W. Wunderlich, Eine überall stetige und nirgends differenzierbare Funktion. Elem. der Math. 7, 73–79 (1952)MATHGoogle Scholar
  188. [YG04]
    T. Yong, Y. Guangjun, Construction of some Kiesswetter-like functions—the continuous but non-differentiable function define by quinary decimal.Anal. Theory Appl. 20, 58–68 (2004)MathSciNetCrossRefGoogle Scholar
  189. [Yon10]
    T. Yong, Construction and generalization of a class of Kiesswetter-like functions. J. Kunming Univ. Sci. Technol. 35, 104–110 (2010)Google Scholar
  190. [You16a]
    G.C. Young, On infinite derivates. Q. J. Pure Appl. Math. 47, 127–175 (1916)MATHGoogle Scholar
  191. [You16b]
    G.C. Young, On the derivates of a function. Lond. M. S. Proc. 15, 360–384 (1916)MathSciNetMATHGoogle Scholar
  192. [Zaj87]
    L. Zajiček, Porosity and σ-porosity. Real Anal. Exch. 13, 314–350 (1987)MathSciNetMATHGoogle Scholar
  193. [Zaj05]
    L. Zajiček, On σ-porous sets in abstract spaces. Abstr. Appl. Anal. 2005(5), 309–334 (2005)MathSciNetCrossRefGoogle Scholar
  194. [Zyg02]
    A. Zygmund, Trigonometric Series (Cambridge University Press, Cambridge, 2002)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marek Jarnicki
    • 1
  • Peter Pflug
    • 2
  1. 1.Institute of MathematicsJagiellonian UniversityKrakówPoland
  2. 2.Insitute for MathematicsCarl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations