Experimental Studies: Clay Swelling

Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The best-known characteristic of clay is a dramatic change in its morphological and geomechanical properties: from hard, dense, and brittle upon drying or firing to soft, pliable, and swelling upon exposure to water. Chemical properties of the 1:1 and 2:1 clay minerals are significantly different, which is mainly related to the bonds between individual layers. The interlayer environment is determined by the chemical nature of clay layers, the layer charge, interlayer cations, and water molecules forming hydration shells around the cations and H-bonding with clay surfaces. Mechanisms of water sorption and cluster organization are electrochemical in nature and fundamental to the swelling process. Some researchers also observed irreversible CO2-induced swelling with smectite in 1–2 W hydration state, but the others reported only shrinking attributed to drying effects of high-pressure CO2, for the cation-exchanged smectite with partly filled second hydration layer. The current interpretation of swelling phenomena evolves rapidly, following advances in experimental techniques and Monte Carlo and MD simulations of the structured fluid behavior. MD simulations show that the interlayer molecules do not organize themselves in a strictly tilted or strictly parallel to the surface configuration, which may result in fairly steep but gradual rather than stepwise increase in the basal spacing as the interlayer is filled with the solvent molecules. The magnitude of swelling hysteresis varies with the hydration energy of the interlayer cations and is generally more pronounced for vermiculite than montmorillonite.

References

  1. Anandarajah, R., & Lu, N. (1991). Numerical study of the electrical double layer repulsion between non-parallel clay particles of finite length. International Journal for Numerical and Analytical Methods in Geomechanics, 15(10), 683–702.CrossRefMATHGoogle Scholar
  2. Barbour, S. L., Fredlund, D. G., & Pufahl, D. E. (1992). The Osmotic Role in the behavior of swelling clay soils. In T. K. Karalis (ed.), Mechanics of swelling: From clays to living cells and tissues. NATO ASI subseries H: Cell biology (Vol. 64, pp. 97–139). Berlin: Springer-Verlag.Google Scholar
  3. Barrer, R. M., & MacLeod, D. M. (1954). Intercalation and sorption by montmorillonite. Transactions of the Faraday Society, 50, 980–989.CrossRefGoogle Scholar
  4. Bassett, W. A. (1960). Role of hydroxyl orientation in mica alteration. Geological Society of America Bulletin, 71(4), 449–456.CrossRefGoogle Scholar
  5. Bolt, G. (1956). Physico-chemical analysis of the compressibility of pure clays. Géotechnique, 6(2), 86–93.CrossRefGoogle Scholar
  6. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.CrossRefGoogle Scholar
  7. Busch, A., et al. (2008). Carbon dioxide storage potential of shales. International Journal of Greenhouse Gas Control, 2(3), 297–308.CrossRefGoogle Scholar
  8. Clementz, D. M., & Mortland, M. (1974). Properties of Reduced Charge Montmorillonite: Tetra-Alkylammonium Ion Exchange Forms. Clays and Clay Minerals, 22(3), 223–229.CrossRefGoogle Scholar
  9. Debye, P., & Hückel, E. (1923). Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift, 24(9), pp. 185–206.Google Scholar
  10. Dreher, P., & Niederbudde, E.-A. (1994). Potassium release from micas and characterization of the alteration products. Clay Minerals, 29(1), 77–85.CrossRefGoogle Scholar
  11. Eberl, D. (1980). Alkali cation selectivity and fixation by cvlay minerals. Clays and Clay Minerals, 28(3), 161–172.CrossRefGoogle Scholar
  12. Eisenman, G., & Horn, R. (1983). Ionic selectivity revisited: the role of kinetic and equlibrium processes in ion permeation through channels. The Journal of Membrane Biology, 76(3), 197–225.CrossRefGoogle Scholar
  13. Fahmy, T. M., Paulaitis, M. E., Johnson, D. M., & McNally, M. E. P. (1993). Modifier effects in the supercritical fluid extraction of solutes from clay, soil, and plant materials. Analytical Chemistry, 65(10), 1462–1469.CrossRefGoogle Scholar
  14. Fenter, P., & Lee, S. S. (2014). Hydration layer structure at solid–water interfaces. MRS Bulletin, 39(12), 1056–1061.CrossRefGoogle Scholar
  15. Fripiat, J. J., Cruz, M. I., Bohor, B. F., & Thomas, J., Jr. (1974). Interlamellar adsorption of carbon dioxide by smectites. Clays and Clay Minerals, 22(1), 23–30.CrossRefGoogle Scholar
  16. Giese, R. F., Jr. (1977). The influence of hydroxyl orientation, stacking sequence, and ionic substitutions on the interlayer bonding of micas. Clays and Clay Minerals, 25(2), 102–104.CrossRefGoogle Scholar
  17. Giese, R. F. (1978). The electrostatic interlayer forces of layer structure minerals. Clays and Clay Minerals, 26(1), 51–57.CrossRefGoogle Scholar
  18. Giesting, P., Guggenheim, S., Koster van Groos, A. F., & Busch, A. (2012a). X-ray diffraction study of K- and Ca-exchanged montmorillonites in CO2 atmospheres. Environmental Science and Technology, 46(10), 5623–5630.Google Scholar
  19. Giesting, P., Guggenheim, S., Koster van Groos, A. F., & Busch, A. (2012b). Interaction of carbon dioxide with Na-exchanged montmorillonite at pressures to 640 bar: Implications for CO2 sequestration. International Journal of Greenhouse Gas Control, 8, 73–81.CrossRefGoogle Scholar
  20. Hansen, E. L., et al. (2012). Swelling transition of a clay induced by heating. Scientific Reports, 2(618), 1–4.Google Scholar
  21. Harward, M. E., Carstea, D. D., & Sayegh, A. H. (1969). Properties of vermiculites and smectites: expansion and collapse. Clays and Clay Minerals, 16(6), 437–447.CrossRefGoogle Scholar
  22. Hemmen, H., et al. (2012). X-ray studies of carbon dioxide intercalation in sodium fluorohectorite clay at near-ambient conditions. Langmuir, 28(3), 1678–1682.CrossRefGoogle Scholar
  23. Hillier, S. (2003). Clay Mineralogy. In G. Middleton et al. (Eds.), Encyclopaedia of sediments and sedimentary rocks (pp. 139–142). Dordrecht: Kluwer Academic Publishers.Google Scholar
  24. Hoffmann, U., Endell, K., & Wilm, D. (1933). Krystall strukturund Quellung vo montmorillonit (Das Tonmineral der Bentonittone). Zeitschrift für Kristallographie, 86(1–6), 340–348.Google Scholar
  25. Katti, D. R., & Shanmugasundaram, V. (2001). Effect of controlled swelling on the microstructure of saturated expansive soil. Canadian Geotechnical Journal, 38(1), 175–182.Google Scholar
  26. Katti, D. R., Schmidt, S. R., Ghosh, P., & Katti, K. S. (2005). Modeling the response of pyrophyllite interlayer to applied stress using molecular dynamics. Clays and Clay Minerals, 53(2), 171–178.CrossRefGoogle Scholar
  27. Kittrick, J. A. (1969). Quantitative evaluation of the strong-force model for expansion and contraction of vermiculite. Soil Science Society of America Proceedings, 33(2), 222–225.Google Scholar
  28. Komadel, P., Madejová, J., & Stucki, J. W. (1995). Reduction and reoxidation of nontronite: Questions of reversibility. Clays and Clay Minerals, 43(1), 105–110.CrossRefGoogle Scholar
  29. Laffer, B. G., Posner, A. M., & Quirk, J. P. (1966). Hysteresis in the crystalline swelling of montmorillonite. Clay Minerals, 6(4), 311–321.CrossRefGoogle Scholar
  30. Laird, D. A. (1987). Layer charge and crystalline swelling of expanding 2:1 phyllosilicates. In Retrospective Theses and Dissertations (Paper 8554). Ames: Digital Repository @ Iowa State University.Google Scholar
  31. Laird, D. A. (1996). Model for crystalline swelling of 2:1 phyllosilicate. Clays and Clay Minerals, 44(4), 553–559.CrossRefGoogle Scholar
  32. Laird, D. A. (2006). Influence of layer charge on swelling of smectites. Applied Clay Science, 34(1–4), 74–87.CrossRefGoogle Scholar
  33. Laird, D. A., Shang, C., & Thompson, M. L. (1995). Hysteresis in crystalline swelling of smectites. Journal of Colloid and Interface Science, 171(1), 240–245.CrossRefGoogle Scholar
  34. Lee, S. S., et al. (2010). Hydrated cation speciation at the muscovite (001)−water interface. Langmuir, 26(22), 16647–16651.CrossRefGoogle Scholar
  35. Loring, J. S., et al. (2012). In situ molecular spectroscopic evidence for CO2 intercalation into montmorillonite in supercritical carbon dioxide. Langmuir, 28(18), 7125–7128.CrossRefGoogle Scholar
  36. Loring, J. S., et al. (2014). In Situ study of CO2 and H2O partitioning between Na-montmorillonite and variably wet supercritical carbon dioxide. Langmuir, 30(21), 6120–6128.CrossRefGoogle Scholar
  37. Low, P. F. (1982). Water in clay-water systems. Agronomie, 2(10), 909–914.CrossRefGoogle Scholar
  38. Mitchell, J. K., & Soga, K. (2005). Fundamentals of soil behaviour (3rd ed.). Hoboken: John Wiley & Sons Inc.Google Scholar
  39. Moore, D. E., & Lockner, D. A. (2007). Friction of the smectite clay montmorillonite: A review and interpretation of data. In T. Dixon & C. Moore (Eds.), The Seismogenic Zone of Subduction Thrust Faults (pp. 317–345). New York: Columbia University Press.Google Scholar
  40. Moore, D. M., & Reynolds, R. C., Jr. (1997). X-Ray diffraction and the identification and analysis of clay minerals (2nd ed.). New York: Oxford University Press.Google Scholar
  41. Myshakin, E. M., et al. (2014). Molecular dynamics simulations of turbostratic dry and hydrated montmorillonite with intercalated carbon dioxide. The Journal of Physical Chemistry A, 118(35), 7454–7468.CrossRefGoogle Scholar
  42. Norrish, K. (1954). The swelling of montmorillonite. Discussions of the Faraday Society, 18, 120–134.CrossRefGoogle Scholar
  43. Norrish, K. (1973a). Factors in the weathering of mica to vermiculite (pp. 417–432). Madrid: Division de Ciencias C.S.I.A.Google Scholar
  44. Norrish, K. (1973b). Forces between clay particles (pp. 375–383). Madrid: Division de Ciencias C.S.I.A.Google Scholar
  45. Norrish, K., & Quirk, J. P. (1954a). Crystalline swelling of montmorillonite: Use of electrolytes to control swelling. Nature, 173(4397), 255–256.Google Scholar
  46. Norrish, K., & Quirk, J. P. (1954b). Crystalline swelling of montmorillonite: Manner of swelling of montmorillonite. Nature, 173(4397), 256–257.CrossRefGoogle Scholar
  47. Romanov, V. N. (2013). Evidence of irreversible CO2 intercalation in montmorillonite. International Journal of Greenhouse Gas Control, 14, 220–226.CrossRefGoogle Scholar
  48. Romanov, V. N., Ackman, T. E., Soong, Y., & Kleinman, R. L. (2009a). CO2 storage in shallow underground and surface coal mines: Challenges and opportunities. Environmental Science and Technology, 43(3), 561–564.CrossRefGoogle Scholar
  49. Romanov, V. N., et al. (2009b). CO2 trapping in clayey materials. Paper presented at the 46th Annual Meeting of the Clay Minerals Society, Billings, MT.Google Scholar
  50. Romanov, V. N., et al. (2010a). Mechanisms of CO2 interaction with expansive clay. Poster presented at the SEA-CSSJ-CMS Trilateral Meeting on Clays, Seville, Spain.Google Scholar
  51. Romanov, V. N., et al. (2010b). CO2 interaction with geomaterials. Paper presented at the AGU Fall Meeting (p. H11 J-01, Invited), San Francisco, CA.Google Scholar
  52. Rother, G., et al. (2013). CO2 sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements. Environmental Science and Technology, 47(1), 205–211.CrossRefGoogle Scholar
  53. Schaef, H. T., et al. (2012). In situ XRD study of Ca2+ saturated montmorillonite (STX-1) exposed to anhydrous and wet supercritical carbon dioxide. International Journal of Greenhouse Gas Control, 6, 220–229.CrossRefGoogle Scholar
  54. Schaef, H. T., et al. (2014). Surface Condensation of CO2 onto Kaolinite. Environmental Science & Technology Letters, 1(2), 142–145.CrossRefGoogle Scholar
  55. Schaef, H. T., et al. (2015). Competitive sorption of CO2 and H2O in 2:1 layer phyllosilicates. Geochimica et Cosmochimica Acta, 161, 248–257.CrossRefGoogle Scholar
  56. Schmidt, S., Katti, D., Ghosh, P., & Katti, K. (2005). Evolution of mechanical response of sodium montmorillonite interlayer with increasing hydration by molecular dynamics. Langmuir, 21(17), 8069–8076.CrossRefGoogle Scholar
  57. Stucki, J. W., & Roth, C. B. (1977). Oxidation-reduction mechanism for structural iron in nontronite. Soil Science Society of America Journal, 41(4), 808–814.CrossRefGoogle Scholar
  58. Suquet, H., Iiyama, J. T., Kodama, H., & Pezerat, H. (1977). Synthesis and swelling properties of saponites with increasing layer charge. Clays and Clay Minerals, 25(3), 231–242.CrossRefGoogle Scholar
  59. Tambach, T. J. (2005). Swelling of clay minerals: A molecular simulation study (Thesis). Wrappers (paperback) ed. Amsterdam: Wageningen, Ponsen & Looijen.Google Scholar
  60. Tambach, T. J., Bolhuis, P. G., M Hensen, E. J., & Smit, B. (2006). Hysteresis in clay swelling induced by hydrogen bonding: Accurate prediction of swelling states. Langmuir, 22(3), 1223–1234.CrossRefGoogle Scholar
  61. Thomas, J., Jr., & Bohor, B. F. (1968). Surface area of montmorillonite from the dynamic sorption of nitrogen and carbon dioxide. Clays and Clay Minerals, 16(1), 83–91.CrossRefGoogle Scholar
  62. van Olphen, H. (1965). Thermodynamics of interlayer adsorption of water in clays. I.—Sodium vermiculite. Journal of Colloid Science, 20(8), 822–837.CrossRefGoogle Scholar
  63. van Olphen, H. (1977). An introduction to clay colloid chemistry (2nd ed.). New York, London, Sydney, Toronto: John Wiley & Sons.Google Scholar
  64. Zarzycki, P., & Gilbert, B. (2016). Long-range interactions restrict water transport in pyrophyllite interlayers. Scientific Reports, 6(25278), 1–5.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.U.S. Department of EnergyNational Energy Technology Laboratory (NETL)PittsburghUSA
  2. 2.U.S. Department of EnergyNETL–AECOMPittsburghUSA

Personalised recommendations