Essential Visual Cryptographic Scheme with Different Importance of Shares

  • Xuehu Yan
  • Shen Wang
  • Xiamu Niu
  • Ching-Nung Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8836)

Abstract

Essential secret image sharing scheme allows some participants own special privileges with different importance of shares. The beauty of visual cryptographic scheme (VCS) is that its decoding is based on stacking and human visual system (HVS) without cryptographic computation. In this paper, for the first time essential and non-essential VCS (ENVCS) is introduced based on pre-existed (k,n) VCS. In the proposed (k0,n0,k,n) ENVCS, we generate the secret image into n shares which are classified into n0 essential shares and n − n0 non-essential shares. In the decoding phase, in order to reveal secret we should collect at least k shares, among which there are at least k0 essential shares. Experiments are conducted to evaluate the security and efficiency of the proposed scheme.

Keywords

Secret sharing Visual cryptographic scheme Essential Secret sharing Essential visual cryptographic scheme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Thien, C.C., Lin, J.C.: Secret image sharing. Computers & Graphics 26(5), 765–770 (2002)CrossRefGoogle Scholar
  3. 3.
    Lin, S.J., Lin, J.C.: Vcpss: A two-in-one two-decoding-options image sharing method combining visual cryptography (vc) and polynomial-style sharing (pss) approaches. Pattern Recognition 40(12), 3652–3666 (2007)CrossRefMATHGoogle Scholar
  4. 4.
    Yang, C.N., Ciou, C.B.: Image secret sharing method with two-decoding-options: Lossless recovery and previewing capability. Image and Vision Computing 28(12), 1600–1610 (2010)CrossRefGoogle Scholar
  5. 5.
    Li, P., Yang, C.N., Wu, C.C., Kong, Q., Ma, Y.: Essential secret image sharing scheme with different importance of shadows. Journal of Visual Communication and Image Representation 24(7), 1106–1114 (2013)CrossRefGoogle Scholar
  6. 6.
    Wang, Z., Arce, G.R., Di Crescenzo, G.: Halftone visual cryptography via error diffusion. IEEE Trans. Inf. Forensics Security 4(3), 383–396 (2009)CrossRefGoogle Scholar
  7. 7.
    Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Yan, X., Wang, S., Niu, X.: Threshold construction from specific cases in visual cryptography without the pixel expansion. Signal Processing (2014), doi:10.1016/j.sigpro.2014.06.011Google Scholar
  9. 9.
    Weir, J., Yan, W.: A comprehensive study of visual cryptography. In: Shi, Y.Q. (ed.) Transactions on DHMS V. LNCS, vol. 6010, pp. 70–105. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Kuwakado, H., Tanaka, H.: Image size invariant visual cryptography. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 82(10), 2172–2177 (1999)Google Scholar
  11. 11.
    Yang, C.N.: New visual secret sharing schemes using probabilistic method. Pattern Recognit. Lett. 25(4), 481–494 (2004)CrossRefGoogle Scholar
  12. 12.
    Cimato, S., De Prisco, R., De Santis, A.: Probabilistic visual cryptography schemes. The Computer Journal 49(1), 97–107 (2006)CrossRefGoogle Scholar
  13. 13.
    Kafri, O., Keren, E.: Encryption of pictures and shapes by random grids. Optics Letters 12(6), 377–379 (1987)CrossRefGoogle Scholar
  14. 14.
    Wu, X., Sun, W.: Improving the visual quality of random grid-based visual secret sharing. Signal Processing 93(5), 977–995 (2013)CrossRefGoogle Scholar
  15. 15.
    Guo, T., Liu, F., Wu, C.: Threshold visual secret sharing by random grids with improved contrast. Journal of Systems and Software 86(8), 2094–2109 (2013)CrossRefGoogle Scholar
  16. 16.
    Shyu, S.J.: Image encryption by random grids. Pattern Recognition 40(3), 1014–1031 (2007)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Xuehu Yan
    • 1
  • Shen Wang
    • 1
  • Xiamu Niu
    • 1
  • Ching-Nung Yang
    • 2
  1. 1.School of Computer Science and TechnologyHarbin Institute of TechnologyHarbinChina
  2. 2.Department of CSIENational Dong Hwa UniversityHualienTaiwan

Personalised recommendations