Continuity of Discrete-Time Fuzzy Systems

  • Takashi Mitsuishi
  • Takanori Terashima
  • Koji Saigusa
  • Nami Shimada
  • Toshimichi Homma
  • Kiyoshi Sawada
  • Yasunari Shidama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8835)

Abstract

The purpose of this study is to prove the existence of IF-THEN fuzzy rules which minimize the performance functional of the nonlinear discrete-time feedback control. In our previous study, the problem of fuzzy optimal control was considered as the problem of finding the minimum (maximum) value of the performance function with fuzzy approximate reasoning. This study analyzes a discrete-time system to make numerical simulation of a real model more simple and fast. A continuity of fuzzy approximate reasoning on the compact set of membership functions selected from continuous function space guarantees an optimal control.

Keywords

Approximate reasoning method discrete-time fuzzy systems functional analysis calculus of variations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. IEE 121(12), 1585–1588 (1974)Google Scholar
  2. 2.
    Mizumoto, M.: Improvement of fuzzy control (IV) - Case by product-sum-gravity method. In: Proc. 6th Fuzzy System Symposium, pp. 9–13 (1990)Google Scholar
  3. 3.
    Mitsuishi, T., Kawabe, J., Wasaki, K., Shidama, Y.: Optimization of Fuzzy Feedback Control Determined by Product-Sum-Gravity Method. Journal of Nonlinear and Convex Analysis 1(2), 201–211 (2000)MathSciNetMATHGoogle Scholar
  4. 4.
    Mitsuishi, T., Endou, N., Shidama, Y.: Continuity of Nakamori Fuzzy Model and Its Application to Optimal Feedback Control. In: Proc. IEEE International Conference on Systems, Man and Cybernetics, pp. 577–581 (2005)Google Scholar
  5. 5.
    Mitsuishi, T., Terashima, T., Shidama, Y.: Optimization of SIRMs Fuzzy Model Using Łukasiewicz Logic. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part II. LNCS, vol. 7664, pp. 108–116. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Miller, R.K., Michel, A.N.: Ordinary Differential Equations. Academic Press, New York (1982)MATHGoogle Scholar
  7. 7.
    Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover Publications, New York (1990)MATHGoogle Scholar
  8. 8.
    Dunford, N., Schwartz, J.T.: Linear Operators Part I: General Theory. John Wiley & Sons, New York (1988)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Takashi Mitsuishi
    • 1
  • Takanori Terashima
    • 2
  • Koji Saigusa
    • 3
  • Nami Shimada
    • 1
  • Toshimichi Homma
    • 4
  • Kiyoshi Sawada
    • 1
  • Yasunari Shidama
    • 5
  1. 1.University of Marketing and Distribution SciencesKobeJapan
  2. 2.Hokkaido Hakodate Technical High SchoolHakodateJapan
  3. 3.Kyushu Sangyo UniversityFukuokaJapan
  4. 4.Osaka University of EconomicsOsakaJapan
  5. 5.Shinshu UniversityNaganoJapan

Personalised recommendations