Neural Network Training by Hybrid Accelerated Cuckoo Particle Swarm Optimization Algorithm

  • Nazri Mohd Nawi
  • Abdullah khan
  • M. Z. Rehman
  • Maslina Abdul Aziz
  • Tutut Herawan
  • Jemal H. Abawajy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8835)


Metaheuristic algorithm is one of the most popular methods in solving many optimization problems. This paper presents a new hybrid approach comprising of two natures inspired metaheuristic algorithms i.e. Cuckoo Search (CS) and Accelerated Particle Swarm Optimization (APSO) for training Artificial Neural Networks (ANN). In order to increase the probability of the egg’s survival, the cuckoo bird migrates by traversing more search space. It can successfully search better solutions by performing levy flight with APSO. In the proposed Hybrid Accelerated Cuckoo Particle Swarm Optimization (HACPSO) algorithm, the communication ability for the cuckoo birds have been provided by APSO, thus making cuckoo bird capable of searching for the best nest with better solution. Experimental results are carried-out on benchmarked datasets, and the performance of the proposed hybrid algorithm is compared with Artificial Bee Colony (ABC) and similar hybrid variants. The results show that the proposed HACPSO algorithm performs better than other algorithms in terms of convergence and accuracy.


Metaheuristic algorithm Neural network Cuckoo search Particle Swarm Optimization Optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kumbhar, S.K.P.Y.: Use of artificial bee colony (ABC) algorithm in artificial neural network synthesis. International Journal of Advanced Engineering Sciences and Technologies 11, 162–171 (2011)Google Scholar
  2. 2.
    Nawi, N.M., Rehman, M.Z.: Improving the Accuracy of Gradient Descent Back Propagation Algorithm (GDAM) on Classification Problems. International Journal on New Computer Architectures and Their Applications (IJNCAA) 1, 838–847 (2011)Google Scholar
  3. 3.
    Abid, S., Fnaiech, F., Najim, M.: Fast feedforward training algorithm using a modified form of the standard back propagation algorithm. IEEE Transactions on Neural Networks 12, 424–430 (2001)CrossRefGoogle Scholar
  4. 4.
    Gori, A.T.M.: On the problem of local minima in back-propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 76–86 (1992)CrossRefGoogle Scholar
  5. 5.
    Yu, X., Onder Efe, M., Kaynak, O.: A general back propagation algorithm for feed forward neural networks learning. IEEE Transactions on Neural Networks 13, 251–259 (2002)CrossRefGoogle Scholar
  6. 6.
    Nawi, M.N., Ransing, R.S., Hamid, A.: BPGD-AG: A New Improvement of Back-Propagation Neural Network Learning Algorithms with Adaptive Gain. Journal of Science and Technology 2 (2011)Google Scholar
  7. 7.
    Nawi, N.M., Ransing, R.S., Salleh, M.N.M., Ghazali, R., Hamid, N.A.: An improved back propagation neural network algorithm on classification problems. In: Zhang, Y., Cuzzocrea, A., Ma, J., Chung, K.-i., Arslan, T., Song, X. (eds.) DTA and BSBT 2010. CCIS, vol. 118, pp. 177–188. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Nawi, N.M., Ghazali, R., Salleh, M.N.M.: The development of improved back-propagation neural networks algorithm for predicting patients with heart disease. In: Zhu, R., Zhang, Y., Liu, B., Liu, C. (eds.) ICICA 2010. LNCS, vol. 6377, pp. 317–324. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Khan, A., Nawi, N.M., Rehman, M.Z.: A New Levenberg-Marquardt based Back-propagation Algorithm trained with Cuckoo Search. In: ICEEI 2013 Procedia Technology 8C, pp. 18–24 (2013)Google Scholar
  10. 10.
    Nawi, N.M., Khan, A., Rehman, M.Z.: A New Cuckoo Search Based Levenberg-Marquardt (CSLM) Algorithm. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 438–451. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Sexton, J.J.R.D.R.: Optimization of neural networks:A comparative analysis of the genetic algorithm and simulated annealing. European Journal of Operational Research 114, 589–601 (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang, J.Z.T.L.J., Lyu, M.: A hybrid particle swarm optimization back propagation algorithm for neural network training. Applied Mathematics and Computation 185, 1026–1037 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Blum, C., Socha, K.: Training feed-forward neural networks with ant colony optimization. In: An Application to Pattern Classification, pp. 233–238 (2005)Google Scholar
  14. 14.
    Nawi, N.M., Khan, A., Rehman, M.Z.: A New Back-Propagation Neural Network Optimized with Cuckoo Search Algorithm. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 413–426. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Deb, S., Yang, X.S.: Cuckoo search via Lévy flights. In: Proceeings of World Congress on Nature & Biologically Inspired Computing, pp. 210–214 (2009)Google Scholar
  16. 16.
    Milan Tuba, M.S., Stanarevic, N.: Modified cuckoo search algorithm for unconstrained optimization problems. In: Proceedings of the European Computing Conference, pp. 263–268 (2011)Google Scholar
  17. 17.
    Yang, X.S., Deb, S.: Engineering Optimisation by Cuckoo Search. Int. J. of Mathematical Modelling and Numerical Optimisation 1, 330–343 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)Google Scholar
  19. 19.
    Yang, X.-S., Deb, S., Fong, S.: Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications. In: Fong, S. (ed.) NDT 2011. CCIS, vol. 136, pp. 53–66. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Yang, X.-S.: Engineering Optimization: An Introduction with Metaheuristic Applications. John Wiley & Sons (2010)Google Scholar
  21. 21.
    Walton, S., Hassan, O., Morgan, K., Brown, M.: Modified cuckoo search: A new gradient free optimisation algorithm. J. Chaos, Solitons & Fractals 44, 710–718 (2011)CrossRefGoogle Scholar
  22. 22.
    Nawi, N.M., Rehman, M.Z., Khan, A.: A New Bat Based Back-Propagation (BAT-BP) Algorithm. In: Swiątek, J., Grzech, A., Swiątek, P., Tomczak, J.M. (eds.) Advances in Systems Science. AISC, vol. 240, pp. 395–404. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nazri Mohd Nawi
    • 1
  • Abdullah khan
    • 1
  • M. Z. Rehman
    • 1
  • Maslina Abdul Aziz
    • 2
  • Tutut Herawan
    • 3
    • 4
  • Jemal H. Abawajy
    • 2
  1. 1.Faculty of Computer Science and Information TechnologyUniversiti Tun Hussein Onn MalaysiaParit RajaMalaysia
  2. 2.School of Information TechnologyDeakin UniversityGeelongAustralia
  3. 3.University of MalayaKuala LumpurMalaysia
  4. 4.AMCS Research CenterYogyakartaIndonesia

Personalised recommendations