Collaboration of the Radial Basis ART and PSO in Multi-Solution Problems of the Hénon Map

  • Fumiaki Tokunaga
  • Takumi Sato
  • Toshimichi Saito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8835)


This paper studies collaboration of the ART and PSO in application to a multi-solution problem for analysis of the H\(\acute{\mbox{e}}\)non map. In our algorithm, the PSO gives candidates of solutions which have no labels. Applying the candidates as inputs, the ART classifies the candidates, labels the categories, and clarify the number of solutions. Performing fundamental numerical experiments, the algorithm efficiency is investigated.


ART PSO Multi-solution problems H\(\acute{\mbox{e}}\)non map 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System. Neural Networks 4, 759–771 (1991)CrossRefGoogle Scholar
  2. 2.
    Anagnostopoulos, G.C., Georgiopoulos, M.: Ellipsoid ART and ARTMAP for Incremental Clustering and Classification. IEEE Trans. Neural Networks, 1221–1226 (2001)Google Scholar
  3. 3.
    Parsons, O., Carpenter, G.A.: ARTMAP Neural Networks for Information Fusion and Data Mining: Map Production and Target Recognition Methodologies. Neural Networks 16, 1075–1089 (2003)CrossRefGoogle Scholar
  4. 4.
    Takanashi, M., Torikai, H., Saito, T.: An Approach to Collaboration of Growing Self-Organizing Maps and Adaptive Resonance Theory Maps. IEICE Trans. Fundamentals E90-A(9), 2047–2050 (2007)Google Scholar
  5. 5.
    Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Willey (2005)Google Scholar
  6. 6.
    Parsopoulos, K.E., Vrahatis, M.N.: On the Computation of All Global Minimizers Through Particle Swarm Optimization. IEEE Trans. Evol. Comput. 8(3), 211–224 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hsieh, S.-T., Sun, T.-Y., Lin, C.-L., Liu, C.-C.: Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer. IEEE Trans. Evol. Comput. 12(2), 242–251 (2008)CrossRefGoogle Scholar
  8. 8.
    Vural, R.A., Yildirim, T., Kadioglu, T., Basargan, A.: Performance Evaluation of Evolutionary Algorithms for Optimal Filter Design. IEEE Trans. Evol. Comput. 16(1), 135–147 (2012)CrossRefGoogle Scholar
  9. 9.
    Matsushita, H., Saito, T.: Application of Particle Swarm Optimization to Parameter Search in Dynamical Systems. NOLTA, IEICE E94-N(10), 458–471 (2011)Google Scholar
  10. 10.
    Ott, E.: Chaos in Dynamical Systems. Cambridge Univ. Press, (1993)Google Scholar
  11. 11.
    Maruyama K., Saito, T.: Deterministic Particle Swarm Optimizers with Collision for Discrete Multi-Solution Problems. In: Proc. IEEE/SMC, pp.1335–1340 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Fumiaki Tokunaga
    • 1
  • Takumi Sato
    • 1
  • Toshimichi Saito
    • 1
  1. 1.Hosei UniversityKoganeiJapan

Personalised recommendations