Human Implicit Intent Discrimination Using EEG and Eye Movement

  • Ukeob Park
  • Rammohan Mallipeddi
  • Minho Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8834)


In this paper, we propose a new human implicit intent understanding model based on multi-modal information, which is a combination of eye movement data and brain wave signal obtained from eye-tracker and Electroencephalography (EEG) sensors respectively. From the eye movement data, we extract human implicit intention related to features such as fixation count and fixation duration corresponding to the areas of interest (AOI). Also, we analyze the EEG signals based on phase synchrony method. Combining the eye movement and EEG information, we train several classifiers such as support vector machine classifier, Gaussian Mixture Model and Naïve Bayesian, which can successfully identify the human’s implicit intention into two defined categories, i.e. navigational and informational intentions. Experimental results show that the human implicit intention can be better understood using multimodal information.


brain-computer interface (BCI) electroencephalographic (EEG) eye movement phase synchrony intent recognition multi-modality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breazeal, C.: Social interactions in HRI: The robot view. IEEE T. Syst. Man. Cy. C: Applications and Reviews 34, 181–186 (2004)CrossRefGoogle Scholar
  2. 2.
    Farrah, W., Kwang-Hyun, P., Dae-jin, K., Jin-Woo, J., Zeungnam, B.: Intention reading towards engineering applications for the elderly and people with disabilities. International Journal of ARM 7, 3–15 (2006)Google Scholar
  3. 3.
    Jansen, B.J., Booth, D.L., Spink, A.: Determining the informational, navigational, and transactional intent of Web queries. Inform. Process. Manag. 44, 1251–1266 (2008)CrossRefGoogle Scholar
  4. 4.
    Ferreira, A., Celeste, C.W., Cheein, F.A., Bastos-Filho, T.F., Sarcinelli-Filho, M., Carelli, R.: Human-machine interfaces based on EMG and EEG applied to robotic systems. J. Neuroeng. Rehabil. 5, 10 (2008)CrossRefGoogle Scholar
  5. 5.
    Goodrich, M.A., Schultz, A.C.: Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction 1, 203–275 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Jaimes, A., Sebe, N.: Multimodal human-computer interaction: A survey. Comput. Vis. Image Und. 108, 116–134 (2007)CrossRefGoogle Scholar
  7. 7.
    Jang, Y.M., Mallipeddi, R., Lee, S., Kwak, H.W., Lee, M.: Human intention recognition based on eyeball movement pattern and pupil size variation. Neurocomputing 128, 421–432 (2013)CrossRefGoogle Scholar
  8. 8.
    Sun, J., Sun, X., Tong, S.: Phase synchronization analysis of EEG signals: An evaluation based on surrogate tests. IEEE Trans. Biomed. Eng. 59, 2254–2263 (2012)CrossRefGoogle Scholar
  9. 9.
    Lachaux, J.-P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring Phase Synchrony in Brain Signals. Hum. Brain Mapp. 8, 194–208 (1999)CrossRefGoogle Scholar
  10. 10.
    Suzuki, H.: Phase relationships of alpha rhythm in man. Jpn. J. Physiol. 24, 569–586 (1974)CrossRefGoogle Scholar
  11. 11.
    Nunez, P.: Electrical Fields of the Brain. Oxford University Press, Mass. (1981)Google Scholar
  12. 12.
    Gonuguntla, V., Wang, Y., Veluvolu, K.C.: Phase Synchrony in Subject-Specific Reactive Band of EEG for Classification of Motor Imagery Tasks. In: Proceedings of 35th Annual International IEEE EMBS Conference, pp. 2784–2787 (2013)Google Scholar
  13. 13.
    Park, U., Veluvolu, K.C., Lee, M.: Phase synchrony for human implicit intent differentiation. In: Proceedings of 20th Annual International IEEE ICONIP Conference, pp. 427–433 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ukeob Park
    • 1
  • Rammohan Mallipeddi
    • 2
  • Minho Lee
    • 2
  1. 1.Department of Robot EngineeringKyungpook National UniversitySouth Korea
  2. 2.School of Electronics EngineeringKyungpook National UniversityTaeguSouth Korea

Personalised recommendations