Data Integrity and Availability Verification Game in Untrusted Cloud Storage

  • Brahim Djebaili
  • Christophe Kiennert
  • Jean Leneutre
  • Lin Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8840)


The recent trends towards outsourcing data to the Cloud as well as various concerns regarding data integrity and availability created an increasing interest in enabling secure Cloud data-centers. Many schemes addressing data integrity issues and complying with various requirements came to place: high scheme efficiency, stateless verification, unbounded use of queries and retrievability of data. Yet, a critical question remains: how to use these schemes efficiently, i.e. how often should data be verified. Constantly checking is a clear waste of resources but only checking at times increases risks. This paper attempts to resolve this thorny issue by formulating the data integrity check problem as a non-cooperative game and by performing an in-depth analysis on the Nash Equilibrium and the engineering implications behind. Based on our game theoretical analysis, the course of action was to anticipate the Cloud provider’s behavior; we then derive the minimum verification resource requirement, and the optimal strategy of the verifier. Finally, our game theoretical model is validated by showing correctness of the analytical results via simulation on a case study.


Cloud computing Game theory Data integrity Data availability Nash equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpcan, T., Basar, T.: Network Security: A Decision and Game-Theoretic Approach. Cambridge University Press (2010)Google Scholar
  2. 2.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  3. 3.
    Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient provable data possession. In: Proceedings of the 4th International Conference on Security and Privacy in Communication Netowrks, p. 9. ACM (2008)Google Scholar
  4. 4.
    Bensoussan, A., Kantarcioglu, M., Hoe, S(C.): A game-theoretical approach for finding optimal strategies in a botnet defense model. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 135–148. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Chen, L., Leneutre, J.: A game theoretical framework on intrusion detection in heterogeneous networks. IEEE Transactions on Information Forensics and Security 4(2), 165–178 (2009)CrossRefGoogle Scholar
  6. 6.
    Curtmola, R., Khan, O., Burns, R., Ateniese, G.: Mr-pdp: Multiple-replica provable data possession. In: The 28th International Conference on Distributed Computing Systems, ICDCS 2008, pp. 411–420. IEEE (2008)Google Scholar
  7. 7.
    Gueye, A., Marbukh, V.: A game-theoretic framework for network security vulnerability assessment and mitigation. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 186–200. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Hassan, M.M., Song, B., Huh, E.-N.: Distributed resource allocation games in horizontal dynamic cloud federation platform. In: 2011 IEEE 13th International Conference on High Performance Computing and Communications (HPCC), pp. 822–827. IEEE (2011)Google Scholar
  9. 9.
    Juels, A., Kaliski Jr., B.S.: Pors: Proofs of retrievability for large files. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 584–597. ACM (2007)Google Scholar
  10. 10.
    Kochumol, A., Win, M.J.: Proving possession and retrievability within a cloud environment: A comparative survey. International Journal of Computer Science and Information Technologies 5(1), 478–485 (2014)Google Scholar
  11. 11.
    Mell, P., Grance, T.: The NIST definition of cloud computing (draft). NIST Special Publication 800(145), 7 (2011)Google Scholar
  12. 12.
    Nix, R., Kantarcioglu, M.: Contractual agreement design for enforcing honesty in cloud outsourcing. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 296–308. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Nix, R., Kantarcioglu, M.: Efficient query verification on outsourced data: A game-theoretic approach. arXiv preprint arXiv:1202.1567 (2012)Google Scholar
  14. 14.
    Ben Rosen, J.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica: Journal of the Econometric Society, 520–534 (1965)Google Scholar
  15. 15.
    Sebé, F., Domingo-Ferrer, J., Martinez-Balleste, A., Deswarte, Y., Quisquater, J.: Efficient remote data possession checking in critical information infrastructures. IEEE Transactions on Knowledge and Data Engineering 20(8), 1034–1038 (2008)CrossRefGoogle Scholar
  16. 16.
    Yang, J., Wang, H., Wang, J., Tan, C., Yu, D.: Provable data possession of resource-constrained mobile devices in cloud computing. JNW 6(7), 1033–1040 (2011)CrossRefGoogle Scholar
  17. 17.
    Zheng, X., Martin, P., Powley, W., Brohman, K.: Applying bargaining game theory to web services negotiation. In: 2010 IEEE International Conference on Services Computing (SCC), pp. 218–225. IEEE (2010)Google Scholar
  18. 18.
    Zhu, Y., Wang, H., Hu, Z., Ahn, G.-J., Hu, H., Yau, S.S.: Efficient provable data possession for hybrid clouds. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, pp. 756–758. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Brahim Djebaili
    • 1
  • Christophe Kiennert
    • 1
  • Jean Leneutre
    • 1
  • Lin Chen
    • 2
  1. 1.Télécom ParisTechParisFrance
  2. 2.Université Paris SudOrsayFrance

Personalised recommendations