Advertisement

Matchings and Decision Trees for Determining Optimal Therapy

  • Natalia KorepanovaEmail author
  • Sergei O. Kuznetsov
  • Alexander I. Karachunskiy
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 436)

Abstract

An approach to the study of different types of treatments in subgroups is proposed. This approach is based on matching algorithms and decision trees. An application to the data on children with acute lymphoblastic leukaemia is considered.

Keywords

Medical informatics Decision trees Optimal therapy Machine learning for medicine 

References

  1. 1.
    Karachunskiy, A., Herold, R., von Stackelberg, A., et al.: Results of the first randomized multicenter trial on childhood acute lymphoblastic leukaemia in Russia. Leukemia 22, 1144–1153 (2008)CrossRefGoogle Scholar
  2. 2.
    Gale, D., Shapley, L.S.: College Admissions and the Stability of Marriage. Am. Math. Mon. 69(1), 9–15 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Roth, A.E.: Differed acceptance algorithm: history, theory, practice, and open questions. Int. J. Game Theory 36(3–4), 537–569 (2007)Google Scholar
  4. 4.
    Alkan, A., Gale, D.: Stable schedule matching under revealed preference. J. Econ. Theory 112, 289–306 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Fürnkranz, J.: Decision tree. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 263–267. Springer, New York (2010)Google Scholar
  6. 6.
    Rokach, L., Maimon, O.: Classification trees. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn, pp. 149–174. Springer, New York (2010)Google Scholar
  7. 7.
    NCI Dictionary of Cancer Terms. http://www.cancer.gov/dictionary?cdrid=655245. Accessed 7 March 2014
  8. 8.
    Deza, M.M., Deza, E.: Encyclopedia of Distances, pp. 94, 323–324. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Shekhar, S., Xiong, H.: Distance measures. In: Encyclopedia of GIS, p. 245. Springer, New York (2008)Google Scholar
  10. 10.
    Fuhrt. B.: Distance and similarity measures. In: Encyclopedia of Multimedia, pp. 188–189. Springer, New York (2008)Google Scholar
  11. 11.
    Mirkin, B.G.: Core Concepts in Data Analysis: Summarization, Correlation, Visualization. Springer, London (2011)CrossRefGoogle Scholar
  12. 12.
    Raileanu, L.E., Stoffel, K.: Theoretical comparison between the Gini Index and Information Gain criteria. Ann. Math. Artif. Intell. 41, 77–93 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39, 261–283 (2013)CrossRefGoogle Scholar
  14. 14.
    Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    May, W.L.: Kaplan-Meier survival analysis. In: Schwab, M. (ed.) Encyclopedia of Cancer, pp. 1590–1593. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Kleinbaum, D.G., Klein, M.: Kaplan-Meier survival curves and the log-rank test. In: Kleinbaum, D.G., Klein, M. (eds.) Survival Analysis, pp. 55–96. Springer, New York (2012)CrossRefGoogle Scholar
  17. 17.
    Beyersmann, J., Schumacher, M., Allognol, A.: Nonparametric hypothesis testing. In: Competing Risks and Multistate Models with R, pp. 155–158. Springer, New York (2012)Google Scholar
  18. 18.
    Piaggio, G., Elbourne, D.R., Altman, D.G., Pocock, S.J., Evans, S.J.W., for the CONSORT Group: Reporting of noninferiority and equivalence randomized trials: extension of the CONSORT 2010 statement. JAMA 308(24), 2594–2604 (2012)CrossRefGoogle Scholar
  19. 19.
    Machin, D., Gardner, M.J.: Calculating confidence intervals for survival time analyses. Brit. Med. J. 296, 1369–1371 (1988)CrossRefGoogle Scholar
  20. 20.
    Goberg-Maitland, M., Frison, L., Halperin, J.L.: Active-control clinical trials to establish equivalence or noninferiority: methodological and statistical concepts linked to quality. Am. Heart J. 146(3), 398–403 (2003)CrossRefGoogle Scholar
  21. 21.
    Glanz, S.A.: Primer of Biostatistics, 7th edn. McGraw-Hill Education, New York (2011)Google Scholar
  22. 22.
    ICH Topic E9: Statistical Principles for Clinical Trials. Step 5. (2.1 Trial Context.), pp. 6–7 http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002928.pdf. Accessed 7 March 2014
  23. 23.
    Ganter, B., Kuznetsov, S.O.: Hypotheses and version spaces. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS (LNAI), vol. 2746. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Blinova, V.G., Dobrynin, D.A., Finn, V.K., Kuznetsov, S.O., Pankratova, E.S.: Toxicology analysis by means of the JSM-method. Bioinformatics 19(10), 1201–1207 (2003)CrossRefGoogle Scholar
  25. 25.
    Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-based data mining with scaled labeled graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Natalia Korepanova
    • 1
    Email author
  • Sergei O. Kuznetsov
    • 1
  • Alexander I. Karachunskiy
    • 2
  1. 1.School of Applied Mathematics and Information ScienceNational Research University Higher School of EconomicsMoscowRussia
  2. 2.Research and Clinical Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia

Personalised recommendations