A Multiscale and Multi-Perturbation Blind Forensic Technique for Median Detecting

  • Anselmo Ferreira
  • Anderson Rocha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8827)

Abstract

This paper aims at detecting traces of median filtering in digital images, a problem of paramount importance in forensics given that filtering can be used to conceal traces of image tampering such as resampling and light direction in photomontages. To accomplish this objective, we present a novel approach based on multiple and multiscale progressive perturbations on images able to capture different median filtering traces through using image quality metrics. Such measures are then used to build a discriminative feature space suitable for proper classification regarding whether or not a given image contains signs of filtering. Experiments using a real-world scenario with compressed and uncompressed images show the effectiveness of the proposed method.

Keywords

Median Filtering Image Tampering Image Forensics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Popescu, A.C., Farid, H.: Statistical tools for digital forensics. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 128–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Kirchner, M., Bohme, R.: Hiding traces of resampling in digital images. IEEE Trans. on Inf. For. and Sec. 3, 582–592 (2008)CrossRefGoogle Scholar
  3. 3.
    Johnson, M.K., Farid, H.: Exposing digital forgeries through specular highlights on the eye. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 311–325. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Saboia, P., Carvalho, T., Rocha, A.: Eye specular highlights telltales for digital forensics: a machine learning approach. In: Intl. Conference on Image Processing, pp. 1977–1980 (2011)Google Scholar
  5. 5.
    Kirchner, M., Fridrich, J.: On detection of median filtering in digital images. In SPIE Media Forensics and Security II, pp. 754110-754110-12 (2010).Google Scholar
  6. 6.
    Cao, G., Zhao, Y., Ni, R., Yu, L., Tian, H.: Forensic detection of median filtering in digital images. In: IEEE Intl. Conference on Multimedia & Expo, pp. 89–94 (2010)Google Scholar
  7. 7.
    Yuan, H.D.: Blind forensics of median filtering in digital images. IEEE Trans. on Infor. For. and Sec. 6, 1335–1345 (2011)CrossRefGoogle Scholar
  8. 8.
    Chen, C., Ni, J.: Median filtering detection using edge based prediction matrix. In: Shi, Y.Q., Kim, H.-J., Perez-Gonzalez, F. (eds.) IWDW 2011. LNCS, vol. 7128, pp. 361–375. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Chen, C., Ni, J., Huang, R., Huang, J.: Blind median filtering detection using statistics in difference domain. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp. 1–15. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Chen, C., Ni, J., Huang, J.: Blind detection of median filtering in digital images: A difference domain based approach. IEEE Trans. on Im. Proc. 22, 4699–4710 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kang, X., Stamm, M., Peng, A., Liu, K.: Robust median filtering forensics using an autoregressive model. IEEE Trans. on Infor. For. and Sec. 8, 1456–1468 (2013)CrossRefGoogle Scholar
  12. 12.
    Kang, X., Stamm, M., Peng, A., Liu, K.: Robust median filtering forensics based on the autoregressive model of median filtered residual. In: IEEE Signal Information Processing Association Annual Summit and Conference, pp. 1–9 (2012)Google Scholar
  13. 13.
    Bovik, A.: Streaking in median filtered images. IEEE Trans. on Acous. Sp. and Sig. Proc. 35, 493–503 (1987)CrossRefMATHGoogle Scholar
  14. 14.
    Thung, K., Raveendran, P.: A survey of image quality measures. In: IEEE Intl. Conference for Technical Postgraduates, pp. 1–4 (2009)Google Scholar
  15. 15.
    Eskicioglu, A., Fisher, P.: Image quality measures and their performance. IEEE Trans. on Comm. 43, 2959–2965 (1995)CrossRefGoogle Scholar
  16. 16.
    Wang, Z., Bovik, A., Sheikh, H.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. on Im. Proc. 13, 600–612 (2004)CrossRefGoogle Scholar
  17. 17.
    Rocha, A., Goldenstein, S.: Progressive randomization: Seeing the unseen. Elsevier Comput. Vis. and Im. Underst. 114, 349–362 (2010)CrossRefGoogle Scholar
  18. 18.
    Avcibas, I., Bayram, S., Memon, N., Ramkumar, M., Sankur, B.: A classifier design for detecting image manipulations. In: IEEE Intl. Conference on Image Processing, pp. 2645–2648 (2004)Google Scholar
  19. 19.
    Avcibas, I., Memon, N., Sankur, B.: Steganalysis based on image quality metrics. In: IEEE Workshop on Multimedia and Signal Processing, pp. 517–522 (2001)Google Scholar
  20. 20.
    Casia tampered image detection database, http://forensics.idealtest.org/
  21. 21.
    Schaefer, G., Stich, M.: Ucid - an uncompressed colour image database. In: Storage and Retrieval Methods and Applications for Multimedia, pp. 472–480 (2004)Google Scholar
  22. 22.
    Chang, C., Lin, C.: LIBSVM: A library for support vector machines. ACM Trans. on Intell. Syst. and Tech. 2, 27:1-27:27 (2011), http://www.csie.ntu.edu.tw/~cjlin/libsvm
  23. 23.
    Fontani, M., Barni, M.: Hiding traces of median filtering in digital images. In: European Signal Processing Conference, pp. 1239–1243 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anselmo Ferreira
    • 1
  • Anderson Rocha
    • 1
  1. 1.Institute of ComputingUniversity of CampinasCampinasBrasil

Personalised recommendations