Advertisement

Grand Challenge Problem 2: Adaptive Awareness for Social Regulation of Emotions in Online Collaborative Learning Environments

  • Guillaume ChanelEmail author
  • Denis Lalanne
  • Elise Lavoué
  • Kristine Lund
  • Gaëlle Molinari
  • Fabien Ringeval
  • Armin Weinberger
Chapter
Part of the SpringerBriefs in Education book series (BRIEFSEDUCAT)

Abstract

Students’ ability to understand and manage emotions in self and others plays an important role in the success of collaborative learning. In online learning environments, the access of socio-emotional cues is reduced, and this may lead to a lack of emotion awareness that could be detrimental to collaboration and learning performances. The project we present here aims at substantially improving learning effects with social media through the use of adaptive emotion awareness technology designed to support students’ emotional regulation in online groups.

Keywords

Computer-supported collaborative learning Affective computing Emotion awareness Emotion management Multi-modal interaction 

References

  1. Chanel, G., Molinari, G., Cereghetti, D., Pun, T., & Bétrancourt, M. (2013). Assessment of computer-supported collaborative processes using interpersonal physiological and eye-movement coupling. In Proceedings—2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, ACII 2013 (pp. 116–122). IEEE Explore.Google Scholar
  2. Eligio, U. X., Ainsworth, S. F., & Crook, C. K. (2012). Emotion understanding and performance during computer-supported collaboration. Computers in Human Behavior, 28, 2046–2054.Google Scholar
  3. Järvenoja, H., & Järvelä, S. (2009). Emotion control in collaborative learning situations: Do students regulate emotions evoked by social challenges. British Journal of Educational Psychology, 79(3), 463–481.CrossRefGoogle Scholar
  4. Lajoie, S. P., Lee, L., Poitras, E., Bassiri, M., Kazemitabar, M., Cruz-Panesso, I., et al. (2015). The role of regulation in medical student learning in small groups: Regulating oneself and others’ learning and emotions. Computers in Human Behavior, 52, 601–616.Google Scholar
  5. Lavoué, É., Molinari, G., Prié, Y., & Khezami, S. (2015). Reflection-in-action markers for reflection-on-action in computer-supported collaborative learning settings. Computers and Education, 88, 129–142.CrossRefGoogle Scholar
  6. Molinari, G., Channel, G., Bétrancourt, M., Pun, T., & Bozelle, C. (2013). Emotion feedback during computer-mediated collaboration: Effects on self-reported emotions and perceived interaction. In N. Rummel, M. Kapur, M. Nathan & S. Puntambekar (Eds.), To See the World and a Grain of Sand: Learning across Levels of Space, Time, and Scale: CSCL 2013 Conference Proceedings Volume 1—Full Papers & Symposia (pp. 336–344). International Society of the Learning Sciences.Google Scholar
  7. Ringeval, F., Sonderegger, A., Noris, B., Billard, A., Sauer, J., & Lalanne, D. (2013). On the influence of emotional feedback on emotion awareness and gaze behavior. In Proceedings—2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, ACII 2013 (pp. 448–453). IEEE Explore.Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Guillaume Chanel
    • 1
    Email author
  • Denis Lalanne
    • 2
  • Elise Lavoué
    • 3
  • Kristine Lund
    • 4
  • Gaëlle Molinari
    • 5
  • Fabien Ringeval
    • 6
  • Armin Weinberger
    • 7
  1. 1.Swiss Center for Affective Sciences, Campus BiotechUniversité de GenèveGenèveSwitzerland
  2. 2.Department of InformaticsUniversity of FribourgFribourgSwitzerland
  3. 3.LIRIS, UMR 5205 CNRSIAE Lyon, Universitė Jean Moulin Lyon 3Lyon Cedex 08France
  4. 4.UMR ICARCNRS and Ecole Normale Supérieure de LyonLyon Cedex 07France
  5. 5.TECFA—FPSEUnidistance and Université de GenèveGenèveSwitzerland
  6. 6.Chair of Complex and Intelligent SystemsUniversity of PassauPassauGermany
  7. 7.Department of Educational TechnologySaarland UniversitySaarbrückenGermany

Personalised recommendations