Tracked Ultrasound in Navigated Spine Interventions

  • Tamas Ungi
  • Andras Lasso
  • Gabor Fichtinger
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 18)


Ultrasound is an increasingly popular imaging modality in image-guided interventions, due to its safety, accessibility, and low cost. But ultrasound imaging has a steep learning curve, and requires significant coordination skills from the operator. It is difficult to interpret cross-sectional anatomy in arbitrary angles, and even more challenging to orient a needle with respect to the ultrasound plane. Position tracking technology is a promising augmentation method to ultrasound imaging. Both the ultrasound transducer and the needle can be tracked, enabling computer-assisted navigation applications in ultrasound-guided spinal interventions. Furthermore, the patient can also be tracked, which enables fusion of other imaging modalities with ultrasound. In this chapter, we first present the technical background of tracked ultrasound. We will review how to build research systems from commercially available components and open-source software. Then we will review some spine-related applications of tracked ultrasound modality, including procedural skills training, needle navigation for anesthesia, surgical navigation, and other potential applications.


Ultrasound Image Pedicle Screw Needle Insertion Position Tracking Ultrasound Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen CP, Lew HL, Tsai WC, Hung YT, Hsu CC (2011) Ultrasound-guided injection techniques for the low back and hip joint. Am J Phys Med Rehabil 90(10):860–867CrossRefGoogle Scholar
  2. 2.
    Carbajal G, Lasso A, Gómez A, Fichtinger G (2013) Improving N-wire phantom-based freehand ultrasound calibration. Int J Comput Assist Radiol Surg 8(6):1063–1072CrossRefGoogle Scholar
  3. 3.
    Lasso A, Heffter T, Pinter C, Ungi T, Fichtinger G (2012) Implementation of the PLUS open-source toolkit for translational research of ultrasound-guided intervention systems. MIDAS J Med Imaging Comput (
  4. 4.
    Palter VN, Grantcharov TP (2010) Simulation in surgical education. CMAJ 182(11):1191–1196CrossRefGoogle Scholar
  5. 5.
    Uppal V, Kearns RJ, McGrady EM (2011) Evaluation of M43B Lumbar puncture simulator-II as a training tool for identification of the epidural space and lumbar puncture. Anaesthesia 66(6):493–496CrossRefGoogle Scholar
  6. 6.
    Moult E, Ungi T, Welch M, Lu J, McGraw RC, Fichtinger G (2013) Ultrasound-guided facet joint injection training using Perk Tutor. Int J Comput Assist Radiol Surg 8(5):831-6Google Scholar
  7. 7.
    Yeo CT, Ungi T, U-Thainual P, Lasso A, McGraw RC, Fichtinger G (2011) The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections. IEEE Trans Biomed Eng 58(7):2031–7Google Scholar
  8. 8.
    Datta V, Mandalia M, Mackay S, Chang A, Cheshire N, Darzi A (2002) Relationship between skill and outcome in the laboratory-based model. Surgery 131(3):318–323CrossRefGoogle Scholar
  9. 9.
    Lin HC, Shafran I, Yuh D, Hager GD (2006) Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg 11(5):220–230CrossRefGoogle Scholar
  10. 10.
    Reiley CE, Hager GD (2009) Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. Med Image Comput Comput Assist Interv 12(Pt 1):435–442Google Scholar
  11. 11.
    Ungi T, Sargent D, Moult E, Lasso A, Pinter C, McGraw RC, Fichtinger G (2012) Perk Tutor: an open-source training platform for ultrasound-guided needle insertions. IEEE Trans Biomed Eng 59(12):3475–3481CrossRefGoogle Scholar
  12. 12.
    Bartha L, Lasso A, Pinter C, Ungi T, Keri Z, Fichtinger G (2013) Open-source surface mesh-based ultrasound-guided spinal intervention simulator. Int J Comput Assist Radiol Surg 8(6):1043–51Google Scholar
  13. 13.
    Galiano K, Obwegeser AA, Bodner G, Freund M, Maurer H, Kamelger FS, Schatzer R, Ploner F (2005) Ultrasound guidance for facet joint injections in the lumbar spine: a computed tomography-controlled feasibility study. Anesth Analg 101(2):579–583CrossRefGoogle Scholar
  14. 14.
    Loizides A, Peer S, Plaikner M, Spiss V, Galiano K, Obernauer J, Gruber H (2011) Ultrasound-guided injections in the lumbar spine. Med Ultrason 13(1):54–58Google Scholar
  15. 15.
    Moore J, Clarke C, Bainbridge D, Wedlake C, Wiles A, Pace D, Peters T (2009) Image guidance for spinal facet injections using tracked ultrasound. Med Image Comput Assist Interv 12(Pt 1):516–523Google Scholar
  16. 16.
    Ungi T, Abolmaesumi P, Jalal R, Welch M, Ayukawa I, Nagpal S, Lasso A, Jaeger M, Borschneck DP, Fichtinger G, Mousavi P (2012) Spinal needle navigation by tracked ultrasound snapshots. IEEE Trans Biomed Eng 59(10):2766–2772Google Scholar
  17. 17.
    Gill S, Abolmaesumi P, Fichtinger G, Boisvert J, Pichora D, Borshneck D, Mousavi P (2012) Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine. Med Image Anal 16(3):662–674CrossRefGoogle Scholar
  18. 18.
    Khallaghi S, Mousavi P, Gong RH, Gill S, Boisvert J, Fichtinger G, Pichora D, Borschneck D, Abolmaesumi P (2010) Registration of a statistical shape model of the lumbar spine to 3D ultrasound images. Med Image Comput Comput Assist Interv 13(Pt 2):68–75Google Scholar
  19. 19.
    Ungi T, Moult E, Schwab JH, Fichtinger G (2013) Tracked ultrasound snapshots in percutaneous pedicle screw placement navigation: a feasibility study. Clin Orthop Relat Res 471(12):4047–4055Google Scholar
  20. 20.
    Hoffman DA, Lonstein JE, Morin MM, Visscher W, Harris BS 3rd, Boice JD Jr (1989) Breast cancer in women with scoliosis exposed to multiple diagnostic x rays. J Natl Cancer Inst 81(17):1307–1312CrossRefGoogle Scholar
  21. 21.
    Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE (2000) Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976) 25(16):2052–2063Google Scholar
  22. 22.
    Schmitz-Feuerhake I, Pflugbeil S (2011) ‘Lifestyle’ and cancer rates in former East and West Germany: the possible contribution of diagnostic radiation exposures. Radiat Prot Dosimetry 147(1–2):310–313Google Scholar
  23. 23.
    Beauchamp M, Labelle H, Grimard G, Stanciu C, Poitras B, Dansereau J (1993) Diurnal variation of Cobb angle measurement in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 18(12):1581–1583Google Scholar
  24. 24.
    Malfair D, Flemming AK, Dvorak MF et al (2010) Radiographic evaluation of scoliosis: review. AJR Am J Roentgenol 194(3 suppl):S8–S22CrossRefGoogle Scholar
  25. 25.
    Sardjono TA, Wilkinson MH, Veldhuizen AG, van Ooijen PM, Purnama KE, Verkerke GJ (2013) Automatic Cobb angle determination from X-ray images. Spine (Phila Pa 1976)Google Scholar
  26. 26.
    Ungi T, King F, Kempston M, Keri Z, Lasso A, Mousavi P, Rudan J, Borschneck DP, Fichtinger G (2013) Spinal curvature measurement by tracked ultrasound snapshots. Ultrasound Med Biol (in press)Google Scholar
  27. 27.
    Yan CX, Goulet B, Tampieri D, Collins DL (2012) Ultrasound-CT registration of vertebrae without reconstruction. Int J Comput Assist Radiol Surg 7:901–909CrossRefGoogle Scholar
  28. 28.
    Herring JL, Dawant BM, Maurer CR Jr, Muratore DM, Galloway RL, Fitzpatrick JM (1998) Surface-based registration of CT images to physical space for image-guided surgery of the spine: a sensitivity study. IEEE Trans Med Imaging 17:743–52Google Scholar
  29. 29.
    Rasoulian A, Abolmaesumi P, Mousavi P (2012) Feature-based multibody rigid registration of CT and ultrasound images of lumbar spine. Med Phys 39:3154–3166CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Queen’s UniversityKingstonCanada

Personalised recommendations