Advertisement

Simultaneous Reconstruction of Maxwell’s Coefficients from Backscattering Data

  • L. BeilinaEmail author
  • M. Cristofol
  • K. Niinimäki
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 120)

Abstract

We use the conjugade gradient method for the solution of an inverse problem for simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions of the Maxwell's system in 3D using backscattering data. We show stability of our inverse problem using the Carleman estimates. Our numerical experiments show reliable reconstruction of both parameters using the optimization approach.

Keywords

Inverse Problem Dielectric Permittivity Conjugate Gradient Method Piecewise Constant Function Finite Element Discretization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research (SSF) through the Gothenburg Mathematical Modelling Centre (GMMC). Kati Niinimäki has been supported by the Finnish Cultural foundation North Savo regional fund. Part of this work was done while the second and third author were visiting the University of Chalmers. The computations were performed on resources at Chalmers Centre for Computational Science and Engineering (C3SE) provided by the Swedish National Infrastructure for Computing (SNIC).

References

  1. 1.
    Assous, F., Degond, P., Heintze, E., Raviart, P.: On a finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109, 222–237 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Beilina, L.: Adaptive finite element method for a coefficient inverse problem for the Maxwell’s system. Appl. Anal. 90(10), 1461–1479. (2011)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Beilina, L.: Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for time-dependent Maxwell’s system. Cent. Eur. J. Math. 11(4), 702–733 (2013). doi:10.2478/s11533-013-0202-3CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Beilina, L., Johnson, C.: A posteriori error estimation in computational inverse scattering. Math. Models Appl. Sci. 1, 23–35 (2005)MathSciNetGoogle Scholar
  5. 5.
    Beilina, L., Thành, N.T., Klibanov, M.V., Fiddy, M.A.: Reconstruction from blind experimental data for an inverse problem for a hyperbolic equation. Inverse Probl. 30, 02500–2 (2014)Google Scholar
  6. 6.
    Beilina, L., Thành, N. T., Klibanov, M.V., Malmberg, J. B.: Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity. Inv. Probl. 30, 105007 (2014)Google Scholar
  7. 7.
    Beilina, L., Cristofol, M., Niinimäki, K.: Optimization Approach for Reconstructing the Dielectric Permittivity and Magnetic Permeability Functions from Limited Observations. (2014, pre-print)Google Scholar
  8. 8.
    Belishev, M.I., Isakov, V.M.: On the uniqueness of the recovery of parameters of the Maxwell system from dynamical boundary data. J. Math. Sci. 122(5), 3459–3469 (2004)MathSciNetGoogle Scholar
  9. 9.
    Bellassoued, M., Cristofol, M., Soccorsi, E.: Inverse boundary value problem for the dynamical heterogeneous Maxwell’s system. Inverse Probl. 28, 09500–9 (2012) (188 pp)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, Berlin (1994)CrossRefzbMATHGoogle Scholar
  11. 11.
    Caro, P., Ola, P., Salo, M.: Inverse boundary value problem for Maxwell equations with local data. Comm. PDE. 34(11), 1425–1464 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Catalá-Civera, J.M., Canós-Marin, A.J., Sempere, L., de los Reyes, E.: Microwaveresonator for the non-invasive evaluation of degradation processes in liquid composites. IEEE. Electron Lett. 37, 99–100 (2001)CrossRefGoogle Scholar
  13. 13.
    Cho, H.S., Kim, S., Kim, J., Jung, J.: Determination of allowable defect size in multimode polymer waveguides fabricated by printed circuit board compatible processes. J. Micromech. Microeng. 20 (2010) doi:10.1088/0960-1317/20/3/035035Google Scholar
  14. 14.
    Cohen, G.C.: Higher Order Numerical Methods for Transient Wave Equations. Springer-Verlag Berlin Heidelberg (2002)Google Scholar
  15. 15.
    Courant, R., Friedrichs, K., Lewy, H.: On the partial differential equations od mathematical physics. IBM J. Res. Dev. 11(2), 215–234 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Eller, M., Isakov, V., Nakamura, G., Tataru, D.: Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems. In “Nonlinear Partial Differential Equations and their Applications`. Collège de France Seminar 14, 329–349 (2002)Google Scholar
  17. 17.
    Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31, 629–651 (1977)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Boston (2000)Google Scholar
  19. 19.
    Klibanov, M.V.: Uniqueness of the solution of two inverse problems for a Maxwellian system. Comput. Math. Math. Phys. 26, 67–73 (1986)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kuzhuget, A.V., Beilina, L., Klibanov, M.V., Sullivan, A., Nguyen, L., Fiddy, M.A.: Blind experimental data collected in the field and an approximately globally convergent inverse algorithm. Inverse Probl. 28, 09500–7 (2012)CrossRefGoogle Scholar
  21. 21.
    Li, S., Yamamoto, M.: An inverse source problem for Maxwell’s equations in anisotropic media. Appl. Anal. 84(10), 1051–1067 (2005)Google Scholar
  22. 22.
    Monzó, J., Díaz, A., Balbastre, J.V., Sánchez-Hernández, D., de los Reyes, E.: Selective heating and moisture leveling in microwave-assisted trying of laminal materials: explicit model. 8th Int. Conf. on Microwave and High Frequancy heating AMPERE, Bayreuth, Germany, 2001Google Scholar
  23. 23.
    Munz, C.D., Omnes, P., Schneider, R., Sonnendrucker, E., Voss, U.: Divergence correction techniques for Maxwell Solvers based on a hyperbolic model. J. Comput. Phys. 161, 484–511 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer-Verlag, Berlin (1984)CrossRefzbMATHGoogle Scholar
  25. 25.
    Pitarch, J., Contelles-Cervera, M., Pe˜naranda-Foix, F.L., Catalá-Civera, J.M.: Determination of the permittivity and permeability for waveguides partially loaded with isotropic samples. Meas. Sci. Technol. 17, 145–152 (2006)CrossRefGoogle Scholar
  26. 26.
    Salo, M., Kenig, C., Uhlmann, G.: Inverse problems for the anisotropic Maxwell equations. Duke Math. J. 157(2), 369–419 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Smith, D.R., Schultz, S., Markos, P., Soukoulis, C.M.: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65 (2002). doi:10.1103/PhysRevB.65.195104Google Scholar
  28. 28.
    Smirnov, Y.G., Shestopalov, Y.G., Derevyanchyk, E.D.: Reconstruction of permittivity and permeability tensors of anisotropic materials in a rectangular waveguides from the reflection and transmission coefficients from different frequencies. Proceedings of Progress in Electromagnetic Research Symposium, Stockholm, Sweden, pp. 290–295, 2013Google Scholar
  29. 29.
    Thành, N.T., Beilina, L., Klibanov, M.V., Fiddy, M.A.: Reconstruction of refractive indices from experimental back-scattering data using a globally convergent method. Chalmers Preprint Series (2013:12). ISSN 1652–9715Google Scholar
  30. 30.
    Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, London (1995)CrossRefzbMATHGoogle Scholar
  31. 31.
    WavES. The software package. http://www.waves24.com

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Mathematical SciencesChalmers University of Technology and Gothenburg UniversityGothenburgSweden
  2. 2.Institut de Mathématiques de MarseilleAix-Marseille UniversitéMarseilleFrance

Personalised recommendations