On the Practical Security Bound of GF-NLFSR Structure with SPN Round Function

  • Guangyao Zhao
  • Lei Cheng
  • Chao Li
  • Ruilin Li
  • Xuan Shen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8782)


At ACISP 2009, Choy et al. proposed the generalised Feistel nonlinear feedback shift register structure (GF-NLFSR). The main feature of GF-NLFSR containing n sub-blocks is that it can be parallelized up to n-round for implementation, and meanwhile the provable security bound against differential cryptanalysis (DC) and linear cryptanalysis (LC) can be provided for n + 1 rounds. Thus, it maybe suit for the light-weight encryption environment, such as RFID tags, smart cards, and sensor nodes. The practical security bound of GF-NLFSR with SPN round function was further studied by Yap et al. at Africacrypt 2010, where a differential bound for 2nr-round was provided, while for the linear bound, only partial results for n = 2,4 were presented. In this paper, we eliminate such discrepancy between the practical differential and linear bound of GF-NLFSR with SPN round function by demonstrating that a unified bound could be proved using the “divide and conquer” strategy. We further find a relationship between the truncated differential characteristics and linear characteristics of GF-NLFSR, which builds a nice link between the lower differential bound and linear bound of such construction, and demonstrate that proving the cipher’s resistance against either DC or LC is enough to show its resistance against both DC and LC. We hope that the result in the current paper will be useful when designing ciphers based on GF-NLFSR structure with SPN round function.


cryptography block cipher practical security differential cryptanalysis linear cryptanalysis GF-NLFSR SPN 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Nyberg, K., Knudsen, L.R.: Provable security against a differential attacks. Journal of Cryptology 8(1), 27–37 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  5. 5.
    Knudsen, L.R.: Practically secure Feistel ciphers. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 211–221. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  6. 6.
    Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  7. 7.
    Kanda, M.: Practical security evaluation against differential and linear cryptanalyses for Feistel ciphers with SPN round function. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 324–338. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and Linear Cryptanalysis Using Mixed-Integer Linear Programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Shibutani, K.: On the Diffusion of Generalized Feistel Structures Regarding Differential and Linear Cryptanalysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 211–228. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Choy, J., Chew, G., Khoo, K., Yap, H.: Cryptographic properties and application of a generalized unbalanced Feistel network structure. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 73–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Li, R., Sun, B., Li, C., Qu, L.: Cryptanalysis of a generalized unbalanced Feistel network structure. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Wu, W., Zhang, L., Zhang, L., Zhang, W.: Security analysis of the GF-NLFSR structure and Four-Cell block cipher. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009. LNCS, vol. 5927, pp. 17–31. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Yap, H., Khoo, K., Poschmann, A.: Parallelizing the Camellia and SMS4 block ciphers. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 387–406. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Matsui, M.: New structure of block ciphers with provable security against differenital and linear cyrptanalysis. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 205–218. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Li, R., Li, C., Su, J., Sun, B.: Security evaluation of MISTY structure with SPN round function. Computers and Mathematics with Applications 65(9), 1264–1279 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Biham, E.: On Matsui’s linear cryptanalysis. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  17. 17.
    Matsui, M.: On correlation between the order of S-boxes and the strength of DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guangyao Zhao
    • 1
  • Lei Cheng
    • 2
  • Chao Li
    • 1
    • 2
  • Ruilin Li
    • 3
  • Xuan Shen
    • 2
  1. 1.College of ComputerNational University of Defense TechnologyChangshaPeople’s Republic of China
  2. 2.College of ScienceNational University of Defense TechnologyChangshaPeople’s Republic of China
  3. 3.College of Electronic Science and EngineeringNational University of Defense TechnologyChangshaPeople’s Republic of China

Personalised recommendations