Advertisement

Adaptive versus Static Security in the UC Model

  • Ivan Damgård
  • Jesper Buus Nielsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8782)

Abstract

We show that for certain class of unconditionally secure protocols and target functionalities, static security implies adaptive security in the UC model. Similar results were previously only known for models with weaker security and/or composition guarantees. The result is, for instance, applicable to a wide range of protocols based on secret sharing. It “explains” why an often used proof technique for such protocols works, namely where the simulator runs in its head a copy of the honest players using dummy inputs and generates a protocol execution by letting the dummy players interact with the adversary. When a new player P i is corrupted, the simulator adjusts the state of its dummy copy of P i to be consistent with the real inputs and outputs of P i and gives the state to the adversary. Our result gives a characterization of the cases where this idea will work to prove adaptive security. As a special case, we use our framework to give the first proof of adaptive security of the seminal BGW protocol in the UC framework.

Keywords

Secure Protocol Static Security Ideal Functionality Multiplication Gate Honest Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asharov, G., Lindell, Y.: A full proof of the bgw protocol for perfectly-secure multiparty computation. IACR Cryptology ePrint Archive 2011, 136 (2011)Google Scholar
  2. 2.
    Beaver, D.: Foundations of secure interactive computing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 377–391. Springer, Heidelberg (1992)Google Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 1–10 (1988)Google Scholar
  4. 4.
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science, Las Vegas, Nevada, October 14-17, pp. 136–145. IEEE (2001)Google Scholar
  6. 6.
    Canetti, R., Damgård, I., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive versus non-adaptive security of multi-party protocols. J. Cryptology 17(3), 153–207 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, May 22-24, pp. 639–648 (1996)Google Scholar
  8. 8.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on the Theory of Computing, Montreal, Quebec, Canada, pp. 494–503 (2002)Google Scholar
  9. 9.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, Illinois, May 2-4, pp. 11–19 (1988)Google Scholar
  10. 10.
    Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty computations secure against an adaptive adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, New York City, May 25-27, pp. 218–229 (1987)Google Scholar
  13. 13.
    Maurer, U.: Constructive cryptography – A new paradigm for security definitions and proofs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Pfitzmann, B., Schunter, M., Waidner, M.: Secure reactive systems. Technical Report RZ 3206. IBM Research, Zürich (May 2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ivan Damgård
    • 1
  • Jesper Buus Nielsen
    • 1
  1. 1.Aarhus UniversityDenmark

Personalised recommendations