Verifiable Computation in Multiparty Protocols with Honest Majority

  • Peeter Laud
  • Alisa Pankova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8782)

Abstract

We present a generic method for turning passively secure protocols into protocols secure against covert attacks. The method adds a post-execution verification phase to the protocol that allows a misbehaving party to escape detection only with negligible probability. The execution phase, after which the computed protocol result is already available for parties, has only negligible overhead added by our method. The checks, based on linear probabilistically checkable proofs, are done in zero-knowledge, thereby preserving the privacy guarantees of the original protocol. Our method is inspired by recent results in verifiable computation, adapting them to multiparty setting and significantly lowering their computational costs for the provers.

Keywords

Secure multiparty computation Verifiable computation Linear PCP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S., Safra, S.: Probabilistic Checking of Proofs: A New Characterization of NP. J. ACM 45(1), 70–122 (1998)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic adversaries. J. Cryptology 23(2), 281–343 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 590–609. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Baum, C., Damgård, I., Orlandi, C.: Publicly Auditable Secure Multi-Party Computation. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Bitansky, N., Chiesa, A., Ishai, Y., Ostrovsky, R., Paneth, O.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P.: Secure multi-party data analysis: end user validation and practical experiments. Cryptology ePrint Archive, Report 2013/826 (2013)Google Scholar
  8. 8.
    Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From Input Private to Universally Composable Secure Multi-party Computation Primitives. In: Proceedings of the 27th IEEE Computer Security Foundations Symposium, pp. 184–198. IEEE (2014)Google Scholar
  9. 9.
    Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418 (2012)CrossRefGoogle Scholar
  10. 10.
    Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-preserving aggregation of multi-domain network events and statistics. In: USENIX Security Symposium, Washington, DC, USA, pp. 223–239 (2010)Google Scholar
  12. 12.
    Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)Google Scholar
  14. 14.
    Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous Multiparty Computation: Theory and Implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Damgård, I., Geisler, M., Nielsen, J.B.: From passive to covert security at low cost. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 128–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical Covertly Secure MPC for Dishonest Majority – Or: Breaking the SPDZ Limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Franklin, M., Gondree, M., Mohassel, P.: Communication-efficient private protocols for longest common subsequence. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 265–278. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic Span Programs and Succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. In: STOC, pp. 218–229. ACM (1987)Google Scholar
  25. 25.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: Twenty-Second Annual IEEE Conference on Computational Complexity, CCC 2007, pp. 278–291. IEEE (2007)Google Scholar
  26. 26.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: Proceedings of the Twenty-fourth Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 723–732. ACM, New York (1992), http://doi.acm.org/10.1145/129712.129782 CrossRefGoogle Scholar
  27. 27.
    Kumaresan, R., Patra, A., Rangan, C.P.: The round complexity of verifiable secret sharing: The statistical case. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 431–447. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Laud, P., Pankova, A.: Verifiable Computation in Multiparty Protocols with Honest Majority. Cryptology ePrint Archive, report 2014/060 (2014)Google Scholar
  29. 29.
    Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs and linear error-correcting codes. Cryptology ePrint Archive, report 2013/121 (2013)Google Scholar
  30. 30.
    Merkle, R.C.: Secrecy, authentication, and public key systems. Ph.D. thesis, Stanford University (1979)Google Scholar
  31. 31.
    Micali, S.: CS Proofs (Extended Abstract). In: FOCS, pp. 436–453. IEEE Computer Society (1994)Google Scholar
  32. 32.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifiable computation. In: IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society (2013)Google Scholar
  33. 33.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  34. 34.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: Johnson, D.S. (ed.) STOC, pp. 73–85. ACM (1989)Google Scholar
  35. 35.
    Setty, S.T.V., Vu, V., Panpalia, N., Braun, B., Blumberg, A.J., Walfish, M.: Taking proof-based verified computation a few steps closer to practicality. In: USENIX Security Symposium (2012)Google Scholar
  36. 36.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Yao, A.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Peeter Laud
    • 1
  • Alisa Pankova
    • 1
    • 2
    • 3
  1. 1.Cybernetica ASEstonia
  2. 2.Software Technologies and Applications Competence Centre (STACC)Estonia
  3. 3.University of TartuEstonia

Personalised recommendations