A New Nonlinear Neural Network for Solving QP Problems

  • Yinhui YanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8866)


In this paper, a new nonlinear neural network is proposed to solving quadratic programming problems subject to linear equality and inequality constraints without any parameter tuning. This nonlinear neural network is proved to be stable in the sense of Lyapunov under certain conditions. Simulation results are further presented to show the effectiveness and performance of this neural network.


Nonlinear neural network Lyapunov stability Quadratic programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Franklin, N.J.: Methods of Mathematical Economics: Linear and Nonlinear Programming. Society for Industrial and Applied Mathematics, Fixed-Point Theorems (2002)Google Scholar
  2. 2.
    Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer (2008)Google Scholar
  3. 3.
    Bazaraa, M.S., Sherali, D.H., Shetty C.M.: Nonlinear Programming: Theory and Algorithms. Wiley-Interscience (2006)Google Scholar
  4. 4.
    Surhone, L.M., Tennoe, M.F., Henssonow, S.F.: Quadratic Programming. Betascript Publishing (2010)Google Scholar
  5. 5.
    Gärtner, B., Matousek, J.: Approximation Algorithms and Semidefinite Programming. Springer (2012)Google Scholar
  6. 6.
    Griva, I., Nash, S.G., Sofer, A.: Linear and Nonlinear Optimization, 2nd edn. Society for Industrial Mathematics (2008)Google Scholar
  7. 7.
    Hertog, D.: Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity. Springer (1994)Google Scholar
  8. 8.
    Lee, G.N.: Quadratic Programming and Affine Variational Inequalities: A Qualitative Study. Springer (2010)Google Scholar
  9. 9.
    Tank, D.W., Hopfield, J.J.: Simple Neural Optimization Networks: An A/D Converter, Signal Decision Circuit, and a Linear Programming Circuit. IEEE Transactions on Circuits and Systems 33(5), 533–541 (1986)CrossRefGoogle Scholar
  10. 10.
    Hopfield, J.J., Tank, D.W.: Computing with Neural Circuits: A Model. Science 233, 625–633 (1986)CrossRefGoogle Scholar
  11. 11.
    Zhang, S., Constantinides, A.G.: Lagrange Programming Neural Networks. IEEE Transactions on Circuits and Systems II 39(7), 441–452 (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    Wang, J.: A Deterministic Annealing Neural Network for Convex Programming. Neural Networks 5(4), 962–971 (1994)Google Scholar
  13. 13.
    Ding, K., Huang, N.J.: A New Class of Interval Projection Neural Networks for Solving Interval Quadratic Program. Chaos, Solitons and Fractals 3, 149–164 (2008)Google Scholar
  14. 14.
    Yang, Y., Cao, J.: Solving Quadratic Programming Problems by Delayed Projection Neural Network. IEEE Transactions on Neural Networks 17(6), 1630–1634 (2006)CrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Wang, J.: A Dual Neural Network for Convex Quadratic Programming Subject to Linear Equality and Inequality Constraints. Physics Letters A 298, 271–278 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Hu, X., Wang, J.: An Improved Dual Neural Network for Solving a Class of Quadratic Programming Problems and Its K-Winners-Take-All Application. IEEE Transactions on Neural Networks 19(2), 2022–2031 (2009)Google Scholar
  17. 17.
    Xia, Y., Feng, G., Wang, J.: Primal-Dual Neural Network for Online Resolving Constrained Kinematic Redundancy in Robot Motion Control. IEEE Transactions on Systems, Man and Cybernetics 35(1), 54–64 (2005)CrossRefGoogle Scholar
  18. 18.
    Kennedy, M.P., Chua, L.O.: Neural Networks for Nonlinear Programming. IEEE Transactions on Circuits and Systems 35(5), 554–562 (1988)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Maa, C.Y., Schanblatt, M.A.: A Two-Phase Optimization Neural Network. IEEE Transactions on Neural Network 3(6), 1003–1009 (1992)CrossRefGoogle Scholar
  20. 20.
    Xia, Y.: A New Neural Network for Solving Linear Programming Problems and Its Application. IEEE Transactions on Neural Networks 7(2), 525–529 (1996)CrossRefGoogle Scholar
  21. 21.
    Nguyen, K.V.: A Nonlinear Neural Network for Solving Linear Programming Problems. In: International Symposium on Mathematical Programming, ISMP 2000, Atlanta, GA, USA (2000)Google Scholar
  22. 22.
    Taylor, J.G.: Mathematical Approaches to Neural Networks. North-Holland (1993)Google Scholar
  23. 23.
    Harvey, R.L.: Neural Network Principles. Prentice Hall (1994)Google Scholar
  24. 24.
    Veelenturf, L.: Analysis and Applications of Artifical Neural Networks. Prentice Hall (1995)Google Scholar
  25. 25.
    Rojas, R., Feldman, J.: Neural Networks A Systematic Introduction. Springer (1996)Google Scholar
  26. 26.
    Mehrotra, K., Mohan, C.K., Ranka, S.: Elements of Artificial Neural Networks. MIT Press (1997)Google Scholar
  27. 27.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall (1998)Google Scholar
  28. 28.
    Michel, A., Liu, D.: Qualitative Analysis and Synthesis of Recurrent Neural Networks. CRC Press (2001)Google Scholar
  29. 29.
    Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. Martin Hagan (2002)Google Scholar
  30. 30.
    Gurney, K.: An Introduction to Neural Networks. CRC Press (2003)Google Scholar
  31. 31.
    Graupe, D.: Principles of Artificial Neural Networks, 2nd edn. World Scientific Pub Co., Inc. (2007)Google Scholar
  32. 32.
    Boyd, S., Vandenbeghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  33. 33.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  34. 34.
    Maass, W.: Neural Computation with Winner-Take-All as the Only Nonlinear Operation. Advances in Neural Information Processing Systems 12, 293–299 (2000)Google Scholar
  35. 35.
    Marinov, C.A., Calvert, B.D.: Performance Analysis for a K-Winners-Take-All Analog Neural Network: Basic Theory. IEEE Transactions on Neural Networks 14(4), 766–780 (2003)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Liu, S.B., Wang, J.: A Simplified Dual Neural Network for Quadratic Programming with Its KWTA Application. IEEE Transactions on Neural Networks 17(6), 1500–1510 (2006)CrossRefGoogle Scholar
  37. 37.
    Wang, J.: Analogue Neural Network for Solving the Assignment Problem. Electronics Letters 28(11), 1047–1050 (1992)CrossRefGoogle Scholar
  38. 38.
    Hu, X., Wang, J.: Solving the Assignment Problem with the Improved Dual Neural Network. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 2011, Part I. LNCS, vol. 6675, pp. 547–556. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  39. 39.
    Effati, S., Ranjbar, M.: Neural Network Models for Solving the Maximum Flow Problem. Applications and Applied Mathematics 3(3), 149–162 (2008)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Nazemi, A., Omidi, F.: A Capable Neural Network Model for Solving the Maximum Flow Problem. Journal of Computational and Applied Mathematics 236(14), 3498–3513 (2012)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Shenzhen Airlines Co., Ltd.ShenzhenChina

Personalised recommendations