Advertisement

Evolution of Genes Neighborhood within Reconciled Phylogenies: An Ensemble Approach

  • Cedric Chauve
  • Yann Ponty
  • João Paulo Pereira Zanetti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8826)

Abstract

We consider a recently introduced dynamic programming scheme to compute parsimonious evolutionary scenarios for gene adjacencies. We extend this scheme to sample evolutionary scenarios from the whole solution space under the Boltzmann distribution. We apply our algorithms to a dataset of mammalian gene trees and adjacencies, and observe a significant reduction of the number of syntenic inconsistencies observed in the resulting ancestral gene adjacencies.

Keywords

Partition Function Gene Neighborhood Boltzmann Distribution Ancestral Gene Ensemble Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), 283–291 (2012)CrossRefGoogle Scholar
  2. 2.
    Bansal, M.S., Alm, E.J., Kellis, M.: Reconciliation revisited: Handling multiple optima when reconciling with duplication, transfer, and loss. Journal of Computational Biology 20(10), 738–754 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bérard, S., Gallien, C., Boussau, B., Szöllosi, G.J., Daubin, V., Tannier, E.: Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28(18), 382–388 (2012)CrossRefGoogle Scholar
  4. 4.
    Clote, P., Lou, F., Lorenz, W.A.: Maximum expected accuracy structural neighbors of an RNA secondary structure. BMC Bioinformatics, 13(S-5), S6 (2012)Google Scholar
  5. 5.
    Csűrös, M.: Ancestral reconstruction by asymmetric wagner parsimony over continuous characters and squared parsimony over distributions. In: Nelson, C.E., Vialette, S. (eds.) RECOMB-CG 2008. LNCS (LNBI), vol. 5267, pp. 72–86. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Csürös, M.: How to infer ancestral genome features by parsimony: Dynamic programming over an evolutionary tree. In: Models and Algorithms for Genome Evolution, pp. 29–45. Springer (2013)Google Scholar
  7. 7.
    Doyon, J.-P., Hamel, S., Chauve, C.: An efficient method for exploring the space of gene tree/species tree reconciliations in a probabilistic framework. IEEE/ACM Trans. Comput. Biology Bioinform. 9(1), 26–39 (2012)CrossRefGoogle Scholar
  8. 8.
    Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An efficient algorithm for gene/Species trees parsimonious reconciliation with losses, duplications and transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Liberles, D.A. (ed.): Ancestral Sequence Reconstruction. Oxford University Press (2007)Google Scholar
  10. 10.
    Libeskind-Hadas, R., Wu, Y.-C., Bansal, M.S., Kellis, M.: Pareto-optimal phylogenetic tree reconciliation. Bioinformatics 30(12), 87–95 (2014)CrossRefGoogle Scholar
  11. 11.
    Pachter, L., Sturmfels, B.: Parametric inference for biological sequence analysis. PNAS 101(46), 16138–16143 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Patterson, M., Szöllosi, G.J., Daubin, V., Tannier, E.: Lateral gene transfer, rearrangement, reconciliation. BMC Bioinformatics, 14(S-15), S4 (2013)Google Scholar
  13. 13.
    Ponty, Y., Saule, C.: A combinatorial framework for designing (Pseudoknotted) RNA algorithms. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 250–269. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Scornavacca, C., Paprotny, W., Berry, V., Ranwez, V.: Representing a set of reconciliations in a compact way. J. Bioinformatics and Computational Biology 11(2) (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Cedric Chauve
    • 1
  • Yann Ponty
    • 1
    • 2
  • João Paulo Pereira Zanetti
    • 1
    • 3
    • 4
  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada
  2. 2.Pacific Institute for Mathematical Sciences, CNRS UMI3069VancouverCanada
  3. 3.Institute of Computing, UNICAMPCampinasBrazil
  4. 4.São Paulo Research Foundation, FAPESPSão PauloBrazil

Personalised recommendations