Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases pp 131-204 | Cite as
Transition Metal Complexes and the Activation of Dioxygen
Abstract
In order to address how diverse metalloprotein active sites, in particular those containing iron and copper, guide O2 binding and activation processes to perform diverse functions, studies of synthetic models of the active sites have been performed. These studies have led to deep, fundamental chemical insights into how O2 coordinates to mono- and multinuclear Fe and Cu centers and is reduced to superoxo, peroxo, hydroperoxo, and, after O-O bond scission, oxo species relevant to proposed intermediates in catalysis. Recent advances in understanding the various factors that influence the course of O2 activation by Fe and Cu complexes are surveyed, with an emphasis on evaluating the structure, bonding, and reactivity of intermediates involved. The discussion is guided by an overarching mechanistic paradigm, with differences in detail due to the involvement of disparate metal ions, nuclearities, geometries, and supporting ligands providing a rich tapestry of reaction pathways by which O2 is activated at Fe and Cu sites.
Keywords
copper iron oxo complexes peroxo superoxoNotes
Acknowledgment
We thank the NIH (GM47365) for financial support of our work in the area of O2 activation described herein.
References
- 1.R. H. Holm, P. Kennepohl, E. I. Solomon, Chem. Rev. 1996, 96, 2239–2314.PubMedGoogle Scholar
- 2.J. A. Ibers, R. H. Holm, Science 1980, 209, 223–235.PubMedGoogle Scholar
- 3.K. D. Karlin, Science 1993, 261, 701–708.PubMedGoogle Scholar
- 4.S. Shaik, D. Kumar, S. P. de Visser, A. Altun, W. Thiel, Chem. Rev. 2005, 105, 2279–2328.PubMedGoogle Scholar
- 5.I. G. Denisov, T. M. Makris, S. G. Sligar, I. Schlichting, Chem. Rev. 2005, 105, 2253–2277.PubMedGoogle Scholar
- 6.H. Fujii, Coord. Chem. Rev. 2002, 226, 51–60.Google Scholar
- 7.B. Meunier, S. P. de Visser, S. Shaik, Chem. Rev. 2004, 104, 3947–3980.PubMedGoogle Scholar
- 8.E. Rose, M. Quelquejeu, A. Kossanyi, B. Boitrel, Coord. Chem. Rev. 1998, 178–180, 1407–1431.Google Scholar
- 9.M. Rivera, Y. Zeng, J. Inorg. Biochem. 2005, 99, 337–354.PubMedGoogle Scholar
- 10.M. Momenteau, C. A. Reed, Chem. Rev. 1994, 94, 659–698.Google Scholar
- 11.M. Sono, M. P. Roach, E. D. Coulter, J. H. Dawson, Chem. Rev. 1996, 96, 2841–2887.PubMedGoogle Scholar
- 12.I. Schlichting, Science 2000, 287, 1615–1622.PubMedGoogle Scholar
- 13.T. L. Poulos, B. C. Finzel, I. C. Gunsalus, G. C. Wagner, J. Kraut, J. Biol. Chem. 1985, 260, 16122–16130.PubMedGoogle Scholar
- 14.T. L. Poulos, B. C. Finzel, A. J. Howard, Biochemistry 1986, 25, 5314–5322.PubMedGoogle Scholar
- 15.H. Li, S. Narasimhulu, L. M. Havran, J. D. Winkler, T. L. Poulos, J. Am. Chem. Soc. 1995, 117, 6297–6299.Google Scholar
- 16.T. L. Poulos, R. Raag, FASEB J. 1992, 6, 674–679.PubMedGoogle Scholar
- 17.T. L. Poulos, Adv. Inorg. Biochem. 1988, 7, 1–36.PubMedGoogle Scholar
- 18.J. H. Dawson, Science 1988, 240, 433–439.PubMedGoogle Scholar
- 19.L. Que, Jr., Dioxygen Activating Enzymes, in Biological Inorganic Chemistry: Structure and Reactivity, Eds I. Bertini, H. B. Gray, E. I. Stiefel, J. S. Valentine, University Science Books, Sausalito, CA, USA, 2007.Google Scholar
- 20.L. Pauling, C. D. Coryell, Proc. Natl. Acad. Sci. USA 1936, 22, 210–216.Google Scholar
- 21.R. A. Ghiladi, R. M. Kretzer, I. Guzei, A. L. Rheingold, Y. M. Neuhold, K. R. Hatwell, A. D. Zuberbüehler, K. D. Karlin, Inorg. Chem. 2001, 40, 5754–5767.PubMedGoogle Scholar
- 22.Y. Li, S. K. Sharma, K. D. Karlin, Polyhedron 2013, 58, 190–196.Google Scholar
- 23.J. G. Liu, T. Ohta, S. Yamaguchi, T. Ogura, S. Sakamoto, Y. Maeda, Y. Naruta, Angew. Chem. Int. Ed. 2009, 48, 9262–9267.Google Scholar
- 24.G. B. Jameson, G. A. Rodley, W. T. Robinson, R. R. Gagne, C. A. Reed, J. P. Collman, Inorg. Chem. 1978, 17, 850–857.Google Scholar
- 25.G. B. Jameson, F. S. Molinaro, J. A. Ibers, J. P. Collman, J. I. Brauman, E. Rose, K. S. Suslick, J. Am. Chem. Soc. 1978, 100, 6769–6770.Google Scholar
- 26.J. Li, B. C. Noll, A. G. Oliver, C. E. Schulz, W. R. Scheidt, J. Am. Chem. Soc. 2013, 135, 15627–15641.PubMedGoogle Scholar
- 27.H. Nasri, Y. Wang, B. H. Huynh, W. R. Scheidt, J. Am. Chem. Soc. 1991, 113, 717–719.Google Scholar
- 28.C. Rovira, M. Parrinello, Biophys. J. 2000, 78, 93–100.PubMedCentralPubMedGoogle Scholar
- 29.J. Li, Q. Peng, A. Barabanschikov, J. W. Pavlik, E. E. Alp, W. Sturhahn, J. Zhao, C. E. Schulz, J. T. Sage, W. R. Scheidt, Chem. Eur. J. 2011, 17, 11178–11185.PubMedCentralPubMedGoogle Scholar
- 30.S. E. V. Phillips, J. Mol. Biol. 1980, 142, 531–554.PubMedGoogle Scholar
- 31.L. Pauling, Nature 1964, 203, 182–183.Google Scholar
- 32.J. J. Weiss, Nature 1964, 202, 83–84.PubMedGoogle Scholar
- 33.R. D. Harcourt, J. Biol. Inorg. Chem. 2014, 19, 113–123.PubMedGoogle Scholar
- 34.H. Chen, M. Ikeda-Saito, S. Shaik, J. Am. Chem. Soc. 2008, 130, 14778–14790.PubMedGoogle Scholar
- 35.S. A. Wilson, T. Kroll, R. A. Decreau, R. K. Hocking, M. Lundberg, B. Hedman, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 2013, 135, 1124–1136.PubMedCentralPubMedGoogle Scholar
- 36.H. Nasri, Y. Wang, B. H. Huynh, W. R. Scheidt, J. Am. Chem. Soc. 1991, 113, 717–719.Google Scholar
- 37.C. H. Welborn, D. Dolphin, B. R. James, J. Am. Chem. Soc. 1981, 103, 2869–2871.Google Scholar
- 38.J. G. Liu, Y. Shimizu, T. Ohta, Y. Naruta, J. Am. Chem. Soc. 2010, 132, 3672–3673.PubMedGoogle Scholar
- 39.E. McCandlish, A. R. Miksztal, M. Nappa, A. Q. Sprenger, J. S. Valentine, J. D. Stong, T. G. Spiro, J. Am. Chem. Soc. 1980, 102, 4268–4271.Google Scholar
- 40.J. N. Burstyn, J. A. Roe, A. R. Miksztal, B. A. Shaevitz, G. Lang, J. S. Valentine, J. Am. Chem. Soc. 1988, 110, 1382–1388.Google Scholar
- 41.P. Friant, J. Goulon, J. Fischer, L. Ricard, M. Schappacher, R. Weiss, M. Momenteau, Nouv. J. Chim. 1985, 9, 33–40.Google Scholar
- 42.K. Durr, B. P. Macpherson, R. Warratz, F. Hampel, F. Tuczek, M. Helmreich, N. Jux, I. Ivanovic-Burmazovic, J. Am. Chem. Soc. 2007, 129, 4217–4228.PubMedGoogle Scholar
- 43.E. E. Chufan, K. D. Karlin, J. Am. Chem. Soc. 2003, 125, 16160–16161.PubMedGoogle Scholar
- 44.T. Ohta, J. G. Liu, Y. Naruta, Coord. Chem. Rev. 2013, 257, 407–413.Google Scholar
- 45.K. Duerr, O. Troeppner, J. Olah, J. Li, A. Zahl, T. Drewello, N. Jux, J. N. Harvey, I. Ivanovic-Burmazovic, Dalton Trans. 2012, 41, 546–557.PubMedGoogle Scholar
- 46.K. Machii, Y. Watanabe, I. Morishima, J. Am. Chem. Soc. 1995, 117, 6691–6697.Google Scholar
- 47.W. Nam, Y. O. Ryu, W. J. Song, J. Biol. Inorg. Chem. 2004, 9, 654–660.PubMedGoogle Scholar
- 48.W. Nam, M. H. Lim, S. K. Moon, C. Kim, J. Am. Chem. Soc. 2000, 122, 10805–10809.Google Scholar
- 49.J. T. Groves, Y. Watanabe, Inorg. Chem. 1987, 26, 785–786.Google Scholar
- 50.R. D. Arasasingham, A. L. Balch, L. Latos-Grazynski, J. Am. Chem. Soc. 1987, 109, 5846–5847.Google Scholar
- 51.J. T. Groves, Y. Watanabe, J. Am. Chem. Soc. 1988, 110, 8443–8452.Google Scholar
- 52.J. T. Groves, Y. Watanabe, Inorg. Chem. 1987, 26, 785–786.Google Scholar
- 53.K. Tajima, Inorg. Chim. Act. 1989, 163, 115–122.Google Scholar
- 54.K. Tajima, M. Shigematsu, J. Jinno, K. Ishizu, H. Ohya-Nishiguchi, J. Chem. Soc., Chem. Commun. 1990, 144.Google Scholar
- 55.K. Tajima, J. Jinno, K. Ishizu, H. Sakurai, H. Ohyanishiguchi, Inorg. Chem. 1989, 28, 709–715.Google Scholar
- 56.J. Stubbe, J. W. Kozarich, Chem. Rev. 1987, 87, 1107–1136.Google Scholar
- 57.M. C. R. Symons, R. L. Petersen, Biochim. Biophys. Acta, Protein Struct. 1978, 535, 241–246.Google Scholar
- 58.Z. Gasyna, FEBS Lett. 1979, 106, 213–218.PubMedGoogle Scholar
- 59.K. Tajima, S. Oka, T. Edo, S. Miyake, H. Mano, K. Mukai, H. Sakurai, K. Ishizu, J. Chem. Soc., Chem. Commun. 1995, 1507–1508.Google Scholar
- 60.J. Annaraj, J. Cho, Y. M. Lee, S. Y. Kim, R. Latifi, S. P. de Visser, W. Nam, Angew. Chem. Int. Ed. 2009, 48, 4150–4153.Google Scholar
- 61.M. Selke, J. S. Valentine, J. Am. Chem. Soc. 1998, 120, 2652–2653.Google Scholar
- 62.A. Franke, C. Fertinger, R. van Eldik, Chem. Eur. J. 2012, 18, 6935–6949.PubMedGoogle Scholar
- 63.D. Mandon, R. Weiss, K. Jayaraj, A. Gold, J. Terner, E. Bill, A. X. Trautwein, Inorg. Chem. 1992, 31, 4404–4409.Google Scholar
- 64.B. Boso, G. Lang, T. J. McMurry, J. T. Groves, J. Chem. Phys. 1983, 79, 1122–1126.Google Scholar
- 65.H. Fujii, T. Yoshimura, H. Kamada, Inorg. Chem. 1996, 35, 2373–2377.PubMedGoogle Scholar
- 66.H. Fujii, J. Am. Chem. Soc. 1993, 115, 4641–4648.Google Scholar
- 67.H. Fujii, K. Ichikawa, Inorg. Chem. 1992, 31, 1110–1112.Google Scholar
- 68.K. Czarnecki, L. M. Proniewicz, H. Fujii, J. R. Kincaid, J. Am. Chem. Soc. 1996, 118, 4680– 4685Google Scholar
- 69.J. E. Penner-Hahn, E. K. Smith, T. J. McMurry, M. Renner, A. L. Balch, J. T. Groves, J. H. Dawson, K. O. Hodgson, J. Am. Chem. Soc. 1986, 108, 7819–7825.PubMedGoogle Scholar
- 70.S. Hashimoto, Y. Tatsuno, T. Kitagawa, J. Am. Chem. Soc. 1987, 109, 8096–8097.Google Scholar
- 71.S. Hashimoto, Y. Mizutani, Y. Tatsuno, T. Kitagawa, J. Am. Chem. Soc. 1991, 113, 6542– 6549.Google Scholar
- 72.S. E. J. Bell, P. R. Cooke, P. Inchley, D. R. Leanord, S. J. R. Lindsay, A. Robbins, J. Chem. Soc., Perkin Trans. 2 1991, 549–559.Google Scholar
- 73.J. R. Kincaid, A. J. Schneider, K. J. Paeng, J. Am. Chem. Soc. 1989, 111, 735–737.Google Scholar
- 74.K. Czarnecki, S. Nimri, Z. Gross, L. M. Proniewicz, J. R. Kincaid, J. Am. Chem. Soc. 1996, 118, 2929–2935.Google Scholar
- 75.D.H. Chin, A. L. Balch, G. N. La Mar, J. Am. Chem. Soc. 1980, 102, 1446–1448.Google Scholar
- 76.D.H. Chin, G. N. La Mar, A. L. Balch, J. Am. Chem. Soc. 1980, 102, 5945–5947.Google Scholar
- 77.J. T. Groves, Z. Gross, M. K. Stern, Inorg. Chem. 1994, 33, 5065–5072.Google Scholar
- 78.W. Nam, H. J. Choi, H. J. Han, S. H. Cho, H. J. Lee, S.-Y. Han, Chem. Commun. 1999, 387–388.Google Scholar
- 79.Y. M. Goh, W. Nam, Inorg. Chem. 1999, 38, 914–920.PubMedGoogle Scholar
- 80.N. A. Stephenson, A. T. Bell, J. Am. Chem. Soc. 2005, 127, 8635–8643.PubMedGoogle Scholar
- 81.W. Nam, H. J. Han, S.-Y. Oh, Y. J. Lee, M.-H. Choi, S.-Y. Han, C. Kim, S. K. Woo, W. Shin, J. Am. Chem. Soc. 2000, 122, 8677–8684.Google Scholar
- 82.A. Franke, C. Fertinger, R. van Eldik, Angew. Chem. Int. Ed. 2008, 47, 5238–5242.Google Scholar
- 83.N. A. Stephenson, A. T. Bell, J. Mol. Catal. A: Chem. 2007, 275, 54–62.Google Scholar
- 84.W. Nam, Acc. Chem. Res. 2007, 40, 522–531.PubMedGoogle Scholar
- 85.M. Wolak, R. van Eldik, Chem. Eur. J. 2007, 13, 4873–4883.PubMedGoogle Scholar
- 86.A. Franke, M. Wolak, R. van Eldik, Chem. Eur. J. 2009, 15, 10182–10198.PubMedGoogle Scholar
- 87.S. R. Bell, J. T. Groves, J. Am. Chem. Soc. 2009, 131, 9640–9641.PubMedCentralPubMedGoogle Scholar
- 88.N. Jin, J. T. Groves, J. Am. Chem. Soc. 1999, 121, 2923–2924.Google Scholar
- 89.A. Altun, S. Shaik, W. Thiel, J. Am. Chem. Soc. 2007, 129, 8978–8987.PubMedGoogle Scholar
- 90.Y. J. Jeong, Y. Kang, A.-R. Han, Y.-M. Lee, H. Kotani, S. Fukuzumi, W. Nam, Angew. Chem. Int. Ed. 2008, 47, 7321–7324.Google Scholar
- 91.Z. Pan, M. Newcomb, Inorg. Chem. 2007, 46, 6767–6774.PubMedCentralPubMedGoogle Scholar
- 92.J. T. Groves, G. A. McClusky, J. Am. Chem. Soc. 1976, 98, 859–861.Google Scholar
- 93.M. Costas, Coord. Chem. Rev. 2011, 255, 2912–2932.Google Scholar
- 94.J. T. Groves, Proc. Natl. Acad. Sci. USA 2003, 100, 3569–3574.Google Scholar
- 95.L. M. Hjelmeland, L. Aronow, J. R. Trudell, Biochem. Biophys. Res. Commun. 1977, 76, 541–549.Google Scholar
- 96.Z. Pan, J. H. Horner, M. Newcomb, J. Am. Chem. Soc. 2008, 130, 7776–7777.PubMedCentralPubMedGoogle Scholar
- 97.T. G. Traylor, F. Xu, J. Am. Chem. Soc. 1988, 110, 1953–1958.Google Scholar
- 98.H. Hirao, D. Kumar, W. Thiel, S. Shaik, J. Am. Chem. Soc. 2005, 127, 13007–13018.PubMedGoogle Scholar
- 99.H. Hirao, D. Kumar, L. Que, Jr., S. Shaik, J. Am. Chem. Soc. 2006, 128, 8590–8606.PubMedGoogle Scholar
- 100.H. Hirao, L. Que, Jr., W. Nam, S. Shaik, Chem. Eur. J. 2008, 14, 1740–1756.PubMedGoogle Scholar
- 101.J. T. Groves, T. E. Nemo, J. Am. Chem. Soc. 1983, 105, 5786–5791.Google Scholar
- 102.T. Ueda, H. Kitagishi, K. Kano, Inorg. Chem. 2014, 53, 543–551.PubMedGoogle Scholar
- 103.Y. Watanabe, J. Biol. Inorg. Chem. 2001, 6, 846–856.PubMedGoogle Scholar
- 104.A. A. Guedes, A. C. M. A. Santos, M. D. Assis, Kinet. Catal. 2006, 47, 555–563.Google Scholar
- 105.W. Nam, H. J. Lee, S. Y. Oh, C. Kim, H. G. Jang, J. Inorg. Biochem. 2000, 80, 219–225.PubMedGoogle Scholar
- 106.K. Machii, Y. Watanabe, I. Morishima, J. Am. Chem. Soc. 1995, 117, 6691–6697.Google Scholar
- 107.Y. Watanabe, K. Yamaguchi, I. Morishima, K. Takehira, M. Shimizu, T. Hayakawa, H. Orita, Inorg. Chem. 1991, 30, 2581–2582.Google Scholar
- 108.W. Nam, M. H. Lim, H. J. Lee, C. Kim, J. Am. Chem. Soc. 2000, 122, 6641–6647.Google Scholar
- 109.W. Nam, S.-E. Park, I. K. Lim, M. H. Lim, J. Hong, J. Kim, J. Am. Chem. Soc. 2003, 125, 14674–14675.PubMedGoogle Scholar
- 110.N. A. Stephenson, A. T. Bell, Inorg. Chem. 2006, 45, 2758–2766.PubMedGoogle Scholar
- 111.D. Kumar, R. Latifi, S. Kumar, E. V. Rybak-Akimova, M. A. Sainna, S. P. de Visser, Inorg. Chem. 2013, 52, 7968–7979.PubMedGoogle Scholar
- 112.A. Takahashi, T. Kurahashi, H. Fujii, Inorg. Chem. 2011, 50, 6922–6928.PubMedGoogle Scholar
- 113.D. Kumar, B. Karamzadeh, G. N. Sastry, S. P. de Visser, J. Am. Chem. Soc. 2010, 132, 7656–7667.PubMedGoogle Scholar
- 114.D. Kumar, S. P. de Visser, S. Shaik, Chem. Eur. J. 2005, 11, 2825–2835.PubMedGoogle Scholar
- 115.T. Kamachi, Y. Shiota, T. Ohta, K. Yoshizawa, Bull. Chem. Soc. Jpn. 2003, 76, 721–732.Google Scholar
- 116.A. Takahashi, T. Kurahashi, H. Fujii, Inorg. Chem. 2009, 48, 2614–2625.PubMedGoogle Scholar
- 117.L. Castro, M. Buhl, J. Chem. Theory Comput. 2014, 10, 243–251.Google Scholar
- 118.Y. Kang, H. Chen, Y. J. Jeong, W. Lai, E. H. Bae, S. Shaik, W. Nam, Chem. Eur. J. 2009, 15, 10039–10046.PubMedGoogle Scholar
- 119.D. Kumar, G. N. Sastry, S. P. de Visser, J. Phys. Chem. B. 2012, 116, 718–730.PubMedGoogle Scholar
- 120.D. Kumar, R. Latifi, S. Kumar, E. V. Rybak-Akimova, M. A. Sainna, S. P. de Visser, Inorg. Chem. 2013, 52, 7968–7979.PubMedGoogle Scholar
- 121.D. Kumar, G. N. Sastry, S. P. de Visser, Chem. Eur. J. 2011, 17, 6196–6205.PubMedGoogle Scholar
- 122.E. Kim, E. E. Chufan, K. Kamaraj, K. D. Karlin, Chem. Rev. 2004, 104, 1077–1133.PubMedGoogle Scholar
- 123.K. D. Karlin, A. Nanthakumar, S. Fox, N. N. Murthy, N. Ravi, B. H. Huynh, R. D. Orosz, E. P. Day, J. Am. Chem. Soc. 1994, 116, 4753–4763.Google Scholar
- 124.H. V. Obias, G. P. F. van Strijdonck, D.-H. Lee, M. Ralle, N. J. Blackburn, K. D. Karlin, J. Am. Chem. Soc. 1998, 120, 9696–9697.Google Scholar
- 125.S. C. Lee, R. H. Holm, J. Am. Chem. Soc. 1993, 115, 11789–11798.Google Scholar
- 126.T. Chishiro, Y. Shimazaki, F. Tani, Y. Tachi, Y. Naruta, S. Karasawa, S. Hayami, Y. Maeda, Angew. Chem. Int. Ed. 2003, 42, 2788–2791.Google Scholar
- 127.E. E. Chufan, S. C. Puiu, K. D. Karlin, Acc. Chem. Res. 2007, 40, 563–572.PubMedGoogle Scholar
- 128.E. Kim, J. Shearer, S. Lu, P. Moenne-Loccoz, M. E. Helton, S. Kaderli, A. D. Zuberbühler, K. D. Karlin, J. Am. Chem. Soc. 2004, 126, 12716–12717.PubMedGoogle Scholar
- 129.E. Kim, M. E. Helton, S. Lu, P. Moënne-Loccoz, C. D. Incarvito, A. L. Rheingold, S. Kaderli, A. D. Zuberbühler, K. D. Karlin, Inorg. Chem. 2005, 44, 7014–7029.PubMedGoogle Scholar
- 130.Z. Halime, M. T. Kieber-Emmons, M. F. Qayyum, B. Mondal, T. Gandhi, S. C. Puiu, E. E. Chufan, A. A. N. Sarjeant, K. O. Hodgson, B. Hedman, E. I. Solomon, K. D. Karlin, Inorg. Chem. 2010, 49, 3629–3645.PubMedCentralPubMedGoogle Scholar
- 131.M. T. Kieber-Emmons, M. F. Qayyum, Y. Li, Z. Halime, K. O. Hodgson, B. Hedman, K. D. Karlin, E. I. Solomon, Angew. Chem. Int. Ed. 2012, 51, 168–172.Google Scholar
- 132.M. T. Kieber-Emmons, Y. Li, Z. Halime, K. D. Karlin, E. I. Solomon, Inorg. Chem. 2011, 50, 11777–11786.PubMedCentralPubMedGoogle Scholar
- 133.R. A. Ghiladi, E. E. Chufan, D. del Rio, E. I. Solomon, C. Krebs, B. H. Huynh, H. W. Huang, P. Moenne-Loccoz, S. Kaderli, M. Honecker, A. D. Zuberbühler, L. Marzilli, R. J. Cotter, K. D. Karlin, Inorg. Chem. 2007, 46, 3889–3902.PubMedGoogle Scholar
- 134.E. Kim, J. Shearer, S. Lu, P. Moenne-Loccoz, M. E. Helton, S. Kaderli, A. D. Zuberbühler, K. D. Karlin, J. Am. Chem. Soc. 2004, 126, 12716–12717.PubMedGoogle Scholar
- 135.K. D. Karlin, E. Kim, Chem. Lett. 2004, 33, 1226–1231.Google Scholar
- 136.Z. Halime, H. Kotani, Y. Li, S. Fukuzumi, K. D. Karlin, Proc. Natl. Acad. Sci. USA 2011, 108, 13990–13994.Google Scholar
- 137.J. P. Collman, R. A. Decreau, A. Dey, Y. Yang, Proc. Natl. Acad. Sci. USA 2009, 106, 4101–4105.Google Scholar
- 138.R. Boulatov, J. P. Collman, I. M. Shiryaeva, C. J. Sunderland, J. Am. Chem. Soc. 2002, 124, 11923–11935.PubMedGoogle Scholar
- 139.J. P. Collman, R. Boulatov, C. J. Sunderland, L. Fu, Chem. Rev. 2004, 104, 561–588.PubMedGoogle Scholar
- 140.J. P. Collman, R. A. Decreau, C. J. Sunderland, Chem. Commun. 2006, 3894–3896.Google Scholar
- 141.J. P. Collman, R. A. Decreau, Y. Yan, J. Yoon, E. I. Solomon, J. Am. Chem. Soc. 2007, 129, 5794–5795.PubMedCentralPubMedGoogle Scholar
- 142.J. P. Collman, N. K. Devaraj, R. A. Decreau, Y. Yang, Y.-L. Yan, W. Ebina, T. A. Eberspacher, C. E. D. Chidsey, Science 2007, 315, 1565–1568.PubMedCentralPubMedGoogle Scholar
- 143.J. P. Collman, S. Ghosh, A. Dey, R. A. Decreau, Y. Yang, J. Am. Chem. Soc. 2009, 131, 5034–5035PubMedCentralPubMedGoogle Scholar
- 144.E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y.-S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235–349.PubMedGoogle Scholar
- 145.M. Costas, M. P. Mehn, M. P. Jensen, L. Que, Jr. Chem. Rev. 2004, 104, 939–986.PubMedGoogle Scholar
- 146.M. M. Abu-Omar, A. Loaiza, N. Hontzeas, Chem. Rev. 2005, 105, 2227–2252.PubMedGoogle Scholar
- 147.B. J. Wallar, J. D. Lipscomb, Chem. Rev. 1996, 96, 2625–2658.PubMedGoogle Scholar
- 148.M.-H. Baik, M. Newcomb, R. A. Friesner, S. J. Lippard, Chem. Rev. 2003, 103, 2385–2419.PubMedGoogle Scholar
- 149.A. B. Tomter, G. Zoppellaro, N. H. Andersen, H.-P. Hersleth, M. Hammerstad, Å. K. Røhr, G. K. Sandvik, K. R. Strand, G. E. Nilsson, C. B. Bell III, A.-L. Barra, E. Blasco, L. Le Pape, E. I. Solomon, K. K. Andersson, Coord. Chem. Rev. 2013, 257, 3–26.Google Scholar
- 150.J. J. M. Bollinger, C. Krebs, Curr. Opin. Chem. Biol. 2007, 11, 151–158.PubMedGoogle Scholar
- 151.J. J. M. Bollinger, C. Krebs, J. Inorg. Biochem. 2006, 100, 586–605.PubMedGoogle Scholar
- 152.C. Krebs, D. F. Galoníc, D. Fujimori, C. Walsh, J. Bollinger, Acc. Chem. Res. 2007, 40, 484–492.PubMedGoogle Scholar
- 153.E. Kovaleva, M. Neibergall, S. Chakrabarty, J. Lipscomb, Acc. Chem. Res. 2007, 40, 475–483.PubMedCentralPubMedGoogle Scholar
- 154.M. Y. M. Pau, J. D. Lipscomb, E. I. Solomon, Proc. Natl. Acad. Sci. USA 2007, 104, 18355–18362.Google Scholar
- 155.P. C. A. Bruijnincx, G. v. Koten, R. J. M. Klein-Gebbink, Chem. Soc. Rev. 2008, 37, 2716–2744.PubMedGoogle Scholar
- 156.J. D. Lipscomb, Curr. Opin. Struct. Biol. 2008, 18, 644–649.PubMedCentralPubMedGoogle Scholar
- 157.M. H. Sazinsky, S. J. Lippard, Acc. Chem. Res. 2006, 39, 558–566.PubMedGoogle Scholar
- 158.C. E. Tinberg, S. J. Lippard, Acc. Chem. Res. 2011, 44, 280–288.PubMedCentralPubMedGoogle Scholar
- 159.L. Murray, S. Lippard, Acc. Chem. Res. 2007, 40, 466–474.PubMedGoogle Scholar
- 160.V. Guallar, B. F. Gherman, S. J. Lippard, R. A. Friesner, Curr. Opin. Chem. Biol. 2002, 6, 236–242.PubMedGoogle Scholar
- 161.L. Que, Jr. Acc. Chem. Res. 2007, 40, 493–500.PubMedGoogle Scholar
- 162.K. D. Koehntop, J. P. Emerson, L. Que, Jr. J. Biol. Inorg. Chem. 2005, 10, 87–93.PubMedGoogle Scholar
- 163.A. Mukherjee, M. A. Cranswick, M. Chakrabarti, T. K. Paine, K. Fujisawa, E. Münck, L. Que, Jr., Inorg. Chem. 2010, 49, 3618–3628.PubMedCentralPubMedGoogle Scholar
- 164.T. D. H. Bugg, S. Ramaswamy, Curr. Opin. Chem. Biol. 2008, 12, 134–140.PubMedGoogle Scholar
- 165.A. Bassan, T. Borowski, P. E. M. Siegbahn, Dalton Trans. 2004, 3153–3162.Google Scholar
- 166.E. G. Kovaleva, J. D. Lipscomb, Science 2007, 316, 453–457.PubMedCentralPubMedGoogle Scholar
- 167.M. M. Mbughuni, M. Chakrabarti, J. A. Hayden, E. L. Bominaar, M. P. Hendrich, E. Münck, J. D. Lipscomb, Proc. Natl. Acad. Sci. USA 2010, 107, 16788–16793.Google Scholar
- 168.G. J. Christian, S. Ye, F. Neese, Chem. Sci. 2012, 3, 1600–1611.Google Scholar
- 169.M. R. A. Blomberg, P. E. M. Siegbahn, A. Bassan, J. Biol. Inorg. Chem. 2004, 9, 439–452.PubMedGoogle Scholar
- 170.W. A. Schenk, Angew. Chem. Int. Ed. 2000, 39, 3409–3411.Google Scholar
- 171.C. Loenarz, C. J. Schofield, Nat. Chem. Biol. 2008, 4, 152–156.PubMedGoogle Scholar
- 172.J. C. Price, E. W. Barr, B. Tirupati, J. M. Bollinger, C. Krebs, Biochemistry 2003, 42, 7497–7508.PubMedGoogle Scholar
- 173.P. J. Riggs-Gelasco, J. C. Price, R. B. Guyer, J. H. Brehm, E. W. Barr, J. J. M. Bollinger, C. Krebs, J. Am. Chem. Soc. 2004, 126, 8108–8109.PubMedGoogle Scholar
- 174.G. D. Straganz, B. Nidetzky, Chem. Bio. Chem. 2006, 7, 1536–1548.PubMedGoogle Scholar
- 175.J. D. Gardner, B. S. Pierce, B. G. Fox, T. C. Brunold, Biochemistry 2010, 49, 6033–6041.PubMedCentralPubMedGoogle Scholar
- 176.J. A. Crawford, W. Li, B. S. Pierce, Biochemistry 2011, 50, 10241–10253.PubMedGoogle Scholar
- 177.D. Kumar, W. Thiel, S. P. de Visser, J. Am. Chem. Soc. 2011, 133, 3869–3882.PubMedGoogle Scholar
- 178.G. D. Straganz, A. Glieder, L. Brecker, D. W. Ribbons, W. Steiner, Biochem. J. 2003, 369, 573–581.PubMedCentralPubMedGoogle Scholar
- 179.A. Decker, E. I. Solomon, Curr. Opin. Chem. Biol. 2005, 9, 152–163.PubMedGoogle Scholar
- 180.D. Kumar, H. Hirao, S. Shaik, P. M. Kozlowski, J. Am. Chem. Soc. 2006, 128, 16148 – 16158.PubMedGoogle Scholar
- 181.J. Hohenberger, K. Ray, K. Meyer, Nature Comm. 2012, 3, 720–713.Google Scholar
- 182.L. Shu, J. C. Nesheim, K. Kauffmann, E. Münck, J. D. Lipscomb, L. Que, Jr., Science 1997, 275, 515–518.PubMedGoogle Scholar
- 183.L. M. K. Dassama, A. Silakov, C. M. Krest, J. C. Calixto, C. Krebs, J. M. Bollinger, Jr, M. T. Green, J. Am. Chem. Soc. 2013, 135, 16758–16761.PubMedCentralPubMedGoogle Scholar
- 184.S. V. Kryatov, E. V. Rybak-Akimova, S. Schindler, Chem. Rev. 2005, 105, 2175–2226.PubMedGoogle Scholar
- 185.A. Borovik, Acc. Chem. Res. 2005, 38, 54–61.PubMedGoogle Scholar
- 186.S. P. de Visser, J.-U. Rohde, Y.-M. Lee, J. Cho, W. Nam, Coord. Chem. Rev. 2013, 257, 381–393.Google Scholar
- 187.A. R. McDonald, L. Que, Jr., Coord. Chem. Rev. 2013, 257, 414–428.Google Scholar
- 188.X. Shan, L. Que, Jr., Proc. Natl. Acad. Sci. USA 2005, 102, 5340–5345.Google Scholar
- 189.M. Zhao, B. Helms, E. Slonkina, S. Friedle, D. Lee, J. DuBois, B. Hedman, K. O. Hodgson, J. M. J. Frechet, S. J. Lippard, J. Am. Chem. Soc. 2008, 130, 4352–4363.PubMedCentralPubMedGoogle Scholar
- 190.H. Park, M. M. Bittner, J. S. Baus, S. V. Lindeman, A. T. Fiedler, Inorg. Chem. 2012, 51, 10279–10289.PubMedCentralPubMedGoogle Scholar
- 191.S. Hong, Y.-M. Lee, W. Shin, S. Fukuzumi, W. Nam, J. Am. Chem. Soc. 2009, 131, 13910–13911.PubMedGoogle Scholar
- 192.Y.-M. Lee, S. Hong, Y. Morimoto, W. Shin, S. Fukuzumi, W. Nam, J. Am. Chem. Soc. 2010, 132, 10668–10670.PubMedGoogle Scholar
- 193.H. Chen, K.-B. Cho, W. Lai, W. Nam, S. Shaik, J. Chem. Theor. Comp. 2012, 8, 915–926.Google Scholar
- 194.D. Mandon, H. Jaafar, A. Thibon, New J. Chem. 2011, 35, 1986–2000.Google Scholar
- 195.J.-J. Girerd, F. Banse, A. J. Simaan, Struct. Bond. 2000, 97, 145–177.Google Scholar
- 196.M. Martinho, P. Dorlet, E. Rivière, A. Thibon, C. Ribal, F. Banse, J.-J. Girerd, Chem. Eur. J. 2008, 14, 3182–3188.PubMedGoogle Scholar
- 197.W. N. Oloo, K. K. Meier, Y. Wang, S. Shaik, E. Münck, L. Que, Nature Commun. 2014, 5, 1–9.Google Scholar
- 198.C. L. Sun, B. J. Li, Z. J. Shi, Chem. Rev. 2011, 111, 1293–1314.PubMedGoogle Scholar
- 199.M. C. White, Science 2012, 335, 807–809.PubMedGoogle Scholar
- 200.O. Y. Lyakin, R. V. Ottenbacher, K. P. Bryliakov, E. P. Talsi, Top. Catal. 2013, 56, 939– 949.Google Scholar
- 201.D. Barats, G. Leitus, R. Popovitz-Biro, L. J. W. Shimon, R. Neumann, Angew. Chem. Int. Ed. 2008, 47, 9908–9912.Google Scholar
- 202.S. Hong, Y.-M. Lee, K.-B. Cho, M. S. Seo, D. Song, J. Yoon, R. Garcia-Serres, M. Clémancey, T. Ogura, W. Shin, J.-M. Latour, W. Nam, Chem. Sci. 2013, 5, 156–162.Google Scholar
- 203.J.-U. Rohde, H.-H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski, A. Stubna, E. Münck, N. W., L. Que, Jr., Science 2003, 299, 1037–1039.Google Scholar
- 204.J. Hohenberger, K. Ray, K. Meyer, Nature Comm. 2012, 3, 720–713.Google Scholar
- 205.K. Ray, F. Heims, F. F. Pfaff, Eur. J. Inorg. Chem. 2013, 2013, 3784–3807.Google Scholar
- 206.Y. Morimoto, J. Park, T. Suenobu, Y.-M. Lee, W. Nam, S. Fukuzumi, Inorg. Chem. 2012, 51, 10025–10036.PubMedGoogle Scholar
- 207.J. Park, Y.-M. Lee, W. Nam, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 5052–5061.PubMedGoogle Scholar
- 208.S. Fukuzumi, Y. Morimoto, H. Kotani, P. Naumov, Y.-M. Lee, W. Nam, Nature Chem. 2010, 2, 756–759.Google Scholar
- 209.M. Swart, Chem. Commun. 2013, 49, 6650–6652.Google Scholar
- 210.A. K. Vardhaman, P. Barman, S. Kumar, C. V. Sastri, D. Kumar, S. P. de Visser, Angew. Chem. Int. Ed. 2013, 52, 12288–12292.Google Scholar
- 211.C.-W. Tse, T. W.-S. Chow, Z. Guo, H. K. Lee, J.-S. Huang, C.-M. Che, Angew. Chem. Int. Ed. 2014, 53, 798–803.Google Scholar
- 212.I. Prat, J. S. Mathieson, M. Güell, X. Ribas, J. M. Luis, L. Cronin, M. Costas, Nature Chem. 2011, 3, 788–793.Google Scholar
- 213.R. Mayilmurugan, K. Visvaganesan, E. Suresh, M. Palaniandavar, Inorg. Chem. 2009, 48, 8771–8783.PubMedGoogle Scholar
- 214.S. Paria, P. Halder, T. K. Paine, Inorg. Chem. 2010, 49, 4518–4523.PubMedGoogle Scholar
- 215.R. Mayilmurugan, M. Sankaralingam, E. Suresh, M. Palaniandavar, Dalton Trans. 2010, 39, 9611–9625.PubMedGoogle Scholar
- 216.N. Anitha, M. Palaniandavar, Dalton Trans. 2010, 39, 1195–1197.PubMedGoogle Scholar
- 217.K. Sundaravel, E. Suresh, M. Palaniandavar, Inorg. Chim. Acta 2010, 363, 2768–2777.Google Scholar
- 218.K. Sundaravel, M. Sankaralingam, E. Suresh, M. Palaniandavar, Dalton Trans. 2011, 40, 8444–8458.PubMedGoogle Scholar
- 219.K. Sundaravel, E. Suresh, K. Saminathan, M. Palaniandavar, Dalton Trans. 2011, 40, 8092–8107.PubMedGoogle Scholar
- 220.N. Anitha, M. Palaniandavar, Dalton Trans. 2011, 40, 1888–1901.PubMedGoogle Scholar
- 221.M. Palaniandavar, K. Visvaganesan, J. Chem. Sci. 2011, 123, 145–162.Google Scholar
- 222.K. Visvaganesan, S. Ramachitra, M. Palaniandavar, Inorg. Chim. Acta 2011, 378, 87–94.Google Scholar
- 223.P. Halder, S. Paria, T. K. Paine, Chem. Eur. J. 2012, 18, 11778–11787.PubMedGoogle Scholar
- 224.S. Chatterjee, D. Sheet, T. K. Paine, Chem. Commun. 2013, 49, 10251–10253.Google Scholar
- 225.T. Váradi, J. S. Pap, M. Giorgi, L. Párkányi, T. Csay, G. Speier, J. Kaizer, Inorg. Chem. 2013, 52, 1559–1569.PubMedGoogle Scholar
- 226.E. H. Ha, R. Y. N. Ho, J. F. Kisiel, J. S. Valentine, Inorg. Chem. 1995, 34, 2265–2266.Google Scholar
- 227.M. P. Mehn, K. Fujisawa, E. L. Hegg, L. Que, Jr., J. Am. Chem. Soc. 2003, 125, 7828–7842.PubMedGoogle Scholar
- 228.T. K. Paine, H. Zheng, L. Que, Jr., Inorg. Chem. 2005, 44, 474–476.PubMedGoogle Scholar
- 229.A. Mukherjee, M. Martinho, E. L. Bominaar, E. Münck, L. Que, Jr., Angew. Chem. Int. Ed. 2009, 48, 1780–1783.Google Scholar
- 230.O. Das, S. Chatterjee, T. Paine, J. Biol. Inorg. Chem. 2013, 18, 401–410.PubMedGoogle Scholar
- 231.D. Sheet, P. Halder, T. K. Paine, Angew. Chem. Int. Ed. 2013, 52, 13314–13318.Google Scholar
- 232.L. Que, Jr., Y. Dong, Acc. Chem. Res. 1996, 29, 190–196.Google Scholar
- 233.E. Y. Tshuva, S. J. Lippard, Chem. Rev. 2004, 104, 987–1012.PubMedGoogle Scholar
- 234.S. Friedle, E. Reisner, S. J. Lippard, Chem. Soc. Rev. 2010, 39, 2768.PubMedCentralPubMedGoogle Scholar
- 235.I. Siewert, C. Limberg, Chem. Eur. J. 2009, 15, 10316–10328.PubMedGoogle Scholar
- 236.L. H. Do, S. J. Lippard, J. Inorg. Biochem. 2011, 105, 1774–1785.PubMedCentralPubMedGoogle Scholar
- 237.A. A. Shteinman, Russ. Chem. Bull. 2011, 60, 1290–1300.Google Scholar
- 238.J. S. Pap, M. A. Cranswick, É. Balogh-Hergovich, G. Baráth, M. Giorgi, G. T. Rohde, J. Kaizer, G. Speier, L. Que, Jr. Eur. J. Inorg. Chem. 2013, 2013, 3858–3866.PubMedCentralPubMedGoogle Scholar
- 239.J. S. Pap, A. Draksharapu, M. Giorgi, W. R. Browne, J. Kaizer, G. Speier, Chem. Commun. 2014, 50, 1326–1329.Google Scholar
- 240.J. R. Frisch, V. V. Vu, M. Martinho, E. Münck, L. Que, Jr., Inorg. Chem. 2009, 48, 8325–8336.PubMedCentralPubMedGoogle Scholar
- 241.R. L. Rardin, W. B. Tolman, S. J. Lippard, New J. Chem. 1991, 15, 417–430.Google Scholar
- 242.J. R. Frisch, R. McDonnell, E. V. Rybak-Akimova, L. Que, Jr., Inorg. Chem. 2013, 52, 2627–2636.Google Scholar
- 243.L. H. Do, T. Hayashi, P. Moënne-Loccoz, S. J. Lippard, J. Am. Chem. Soc. 2010, 132, 1273–1275.PubMedCentralPubMedGoogle Scholar
- 244.C. E. Tinberg, S. J. Lippard, Biochemistry 2009, 48, 12145–12158.PubMedCentralPubMedGoogle Scholar
- 245.M. A. Cranswick, K. K. Meier, X. Shan, A. Stubna, J. Kaizer, M. P. Mehn, E. Münck, L. Que, Inorg. Chem. 2012, 51, 10417–10426.PubMedCentralPubMedGoogle Scholar
- 246.M. Kodera, Y. Kawahara, Y. Hitomi, T. Nomura, T. Ogura, Y. Kobayashi, J. Am. Chem. Soc. 2012, 134, 13236–13239.PubMedGoogle Scholar
- 247.S. A. Stoian, G. Xue, E. L. Bominaar, L. Que, Jr., E. Münck, J. Am. Chem. Soc. 2014, 136, 1545–1558.PubMedCentralPubMedGoogle Scholar
- 248.G. Xue, A. T. Fiedler, M. Martinho, E. Münck, L. Que, Jr., Proc. Natl. Acad. Sci. USA 2008,105, 20615–20620.Google Scholar
- 249.L. H. Do, G. Xue, L. Que, Jr., S. J. Lippard, Inorg. Chem. 2012, 51, 2393–2402PubMedCentralPubMedGoogle Scholar
- 250.M. Martinho, G. Xue, A. T. Fiedler, L. Que, Jr., E. L. Bominaar, E. Münck, J. Am. Chem. Soc. 2009, 131, 5823–5830.PubMedCentralPubMedGoogle Scholar
- 251.G. Xue, R. De Hont, E. Münck, L. Que, Jr., Nat. Chem. 2010, 2, 400–405.PubMedCentralPubMedGoogle Scholar
- 252.E. I. Solomon, U. M. Sundaram, T. E. Machonkin, Chem. Rev. 1996, 96, 2563–2605.PubMedGoogle Scholar
- 253.J. P. Klinman, Chem. Rev. 1996, 96, 2541–2561.PubMedGoogle Scholar
- 254.Multi-copper Oxidases, Ed A. Messerschmidt, World Scientific, 1997.Google Scholar
- 255.S. Itoh, in Comprehensive Coordination Chemistry II, Vol. 8, Eds J. A. McCleverty, T. J. Meyer, Elsevier, Amsterdam, The Netherlands, 2004, pp. 369–393.Google Scholar
- 256.I. Bento, M. Carrondo, P. Lindley, J. Biol. Inorg. Chem. 2006, 11, 539–547.PubMedGoogle Scholar
- 257.M. A. Culpepper, A. C. Rosenzweig, Crit. Rev. Biochem. Mol. Biol. 2012, 47, 483–492.PubMedCentralPubMedGoogle Scholar
- 258.A. C. Rosenzweig, M. H. Sazinsky, Curr. Opin. Struct. Biol. 2006, 16, 729–735.PubMedGoogle Scholar
- 259.Handbook of Metalloproteins: 2 Volume Set, Eds A. Messerschmidt, R. Huber, T. Poulos, K. Wieghardt, Wiley, 2001.Google Scholar
- 260.E. I. Solomon, J. W. Ginsbach, D. E. Heppner, M. T. Kieber-Emmons, C. H. Kjaergaard, P. J. Smeets, L. Tian, J. S. Woertink, Faraday Disc. 2010, 148, 11.Google Scholar
- 261.L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev. 2004, 104, 1013–1045.PubMedGoogle Scholar
- 262.E. A. Lewis, W. B. Tolman, Chem. Rev. 2004, 104, 1047–1076.PubMedGoogle Scholar
- 263.L. Hatcher, K. D. Karlin, J. Biol. Inorg. Chem. 2004, 9, 669–683.PubMedGoogle Scholar
- 264.L. Q. Hatcher, K. D. Karlin, Adv. Inorg. Chem. 2006, 58, 131–184.Google Scholar
- 265.S. Itoh, S. Fukuzumi, Bull. Chem. Soc. Jpn. 2002, 75, 2081–2095.Google Scholar
- 266.M. R. Halvagar, D. J. Salmon, W. B. Tolman, in Comprehensive Inorganic Chemistry II, Vol. 3, Eds J. Reedijk, K. Poeppelmeier, Elsevier, Oxford, UK, 2013, pp. 455–486.Google Scholar
- 267.T. Kamachi, N. Kihara, Y. Shiota, K. Yoshizawa, Inorg. Chem. 2005, 44, 4226–4236.PubMedGoogle Scholar
- 268.J. W. Whittaker, Arch. Biochem. Biophys. 2005, 433, 227–239.PubMedGoogle Scholar
- 269.J. W. Whittaker, Chem. Rev. 2003, 103, 2347–2363.PubMedGoogle Scholar
- 270.A. Mukherjee, V. V. Smirnov, M. P. Lanci, D. E. Brown, E. M. Shepard, D. M. Dooley, J. P. Roth, J. Am. Chem. Soc. 2008, 130, 9459–9473.PubMedCentralPubMedGoogle Scholar
- 271.A. Crespo, M. A. Marti, A. E. Roitberg, L. M. Amzel, D. A. Estrin, J. Am. Chem. Soc. 2006, 128, 12817–12828.PubMedGoogle Scholar
- 272.J. P. Klinman, J. Biol. Chem. 2006, 281, 3013–3016.PubMedGoogle Scholar
- 273.P. Chen, J. Bell, B. A. Eipper, E. I. Solomon, Biochemistry 2004, 43, 5735–5747.PubMedGoogle Scholar
- 274.K. Rudzka, D. M. Moreno, B. Eipper, R. Mains, D. A. Estrin, L. M. Amzel, J. Biol. Inorg. Chem. 2012, 18, 223–232.PubMedCentralPubMedGoogle Scholar
- 275.D. Schroder, M. C. Holthausen, H. Schwarz, J. Phys. Chem. B 2004, 108, 14407–14416.Google Scholar
- 276.N. Dietl, C. van der Linde, M. Schlangen, M. K. Beyer, H. Schwarz, Angew. Chem. Int. Ed. 2011, 50, 4966–4969.Google Scholar
- 277.K. Yoshizawa, N. Kihara, T. Kamachi, Y. Shiota, Inorg. Chem. 2006, 45, 3034–3041.PubMedGoogle Scholar
- 278.C. M. Wilmot, J. Hajdu, M. J. Mcpherson, P. F. Knowles, S. E. V. Phillips, Science 1999, 286, 1724–1728.PubMedGoogle Scholar
- 279.S. T. Prigge, B. A. Eipper, R. E. Mains, L. M. Amzel, Science 2004, 304, 864–867.PubMedGoogle Scholar
- 280.N. Dietl, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 2012, 51, 5544–5555.Google Scholar
- 281.C. J. Cramer, W. B. Tolman, Acc. Chem. Res. 2007, 40, 601–608.PubMedCentralPubMedGoogle Scholar
- 282.R. Sarangi, N. Aboelella, K. Fujisawa, W. B. Tolman, B. Hedman, K. O. Hodgson, E. I. Solomon, J. Am. Chem. Soc. 2006, 128, 8286–8296.PubMedCentralPubMedGoogle Scholar
- 283.J. S. Woertink, L. Tian, D. Maiti, H. R. Lucas, R. A. Himes, K. D. Karlin, F. Neese, C. Würtele, M. C. Holthausen, E. Bill, J. Sundermeyer, S. Schindler, E. I. Solomon, Inorg. Chem. 2010, 49, 9450–9459.PubMedCentralPubMedGoogle Scholar
- 284.C. Würtele, E. Gaoutchenova, K. Harms, M. C. Holthausen, J. Sundermeyer, S. Schindler, Angew. Chem. Int. Ed. 2006, 45, 3867–3869.Google Scholar
- 285.Y. Kobayashi, K. Ohkubo, T. Nomura, M. Kubo, N. Fujieda, H. Sugimoto, S. Fukuzumi, K. Goto, T. Ogura, S. Itoh, Eur. J. Inorg. Chem. 2012, 2012, 4574–4578.Google Scholar
- 286.A. Kunishita, M. Kubo, H. Sugimoto, T. Ogura, K. Sato, T. Takui, S. Itoh, J. Am. Chem. Soc. 2009, 131, 2788–2789.PubMedGoogle Scholar
- 287.A. Kunishita, M. Z. Ertem, Y. Okubo, T. Tano, H. Sugimoto, K. Ohkubo, N. Fujieda, S. Fukuzumi, C. J. Cramer, S. Itoh, Inorg. Chem. 2012, 51, 9465–9480.PubMedGoogle Scholar
- 288.D. Maiti, H. C. Fry, J. S. Woertink, M. A. Vance, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2007, 129, 264–265.PubMedGoogle Scholar
- 289.R. L. Peterson, R. A. Himes, H. Kotani, T. Suenobu, L. Tian, M. A. Siegler, E. I. Solomon, S. Fukuzumi, K. D. Karlin, J. Am. Chem. Soc. 2011, 133, 1702–1705.PubMedCentralPubMedGoogle Scholar
- 290.P. J. Donoghue, A. K. Gupta, D. W. Boyce, C. J. Cramer, W. B. Tolman, J. Am. Chem. Soc. 2010, 132, 15869–15871.PubMedCentralPubMedGoogle Scholar
- 291.J. W. Ginsbach, R. L. Peterson, R. E. Cowley, K. D. Karlin, E. I. Solomon, Inorg. Chem. 2013, 52, 12872–12874.PubMedGoogle Scholar
- 292.T. Fujii, S. Yamaguchi, Y. Funahashi, T. Ozawa, T. Tosha, T. Kitagawa, H. Masuda, Chem. Commun. 2006, 4428–4430.Google Scholar
- 293.M. Harata, K. Jitsukawa, H. Masuda, H. Einaga, J. Am. Chem. Soc. 1994, 116, 10817–10818.Google Scholar
- 294.L. M. Berreau, S. Mahapatra, J. A. Halfen, V. G. Young, Jr., W. B. Tolman, Inorg. Chem. 1996, 35, 6339–6342.Google Scholar
- 295.D. Maiti, D.-H. Lee, K. Gaoutchenova, C. Würtele, M. C. Holthausen, A. A. N. Sarjeant, J. Sundermeyer, S. Schindler, K. D. Karlin, Angew. Chem. Int. Ed. 2008, 47, 82–85.Google Scholar
- 296.A. Poater, L. Cavallo, Inorg. Chem. 2009, 48, 4062–4066.PubMedGoogle Scholar
- 297.R. L. Peterson, J. W. Ginsbach, R. E. Cowley, M. F. Qayyum, R. A. Himes, M. A. Siegler, C. D. Moore, B. Hedman, K. O. Hodgson, S. Fukuzumi, E. I. Solomon, K. D. Karlin, J. Am. Chem. Soc. 2013, 135, 16454–16467.PubMedGoogle Scholar
- 298.S. Kakuda, R. L. Peterson, K. Ohkubo, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 6513–6522.PubMedCentralPubMedGoogle Scholar
- 299.D. Maiti, A. A. Narducci Sarjeant, K. D. Karlin, Inorg. Chem. 2008, 47, 8736–8747, and references cited therein.PubMedCentralPubMedGoogle Scholar
- 300.T. Ohta, T. Tachiyama, K. Yoshizawa, T. Yamabe, T. Uchida, T. Kitagawa, Inorg. Chem. 2000, 39, 4358–4369.PubMedGoogle Scholar
- 301.A. Wada, M. Harata, K. Hasegawa, K. Jitsukawa, H. Masuda, M. Mukai, T. Kitagawa, H. Einaga, Angew. Chem. Int. Ed. 1998, 37, 798–799.Google Scholar
- 302.S. Yamaguchi, A. Wada, S. Nagatomo, T. Kitagawa, K. Jitsukawa, H. Masuda, Chem. Lett. 2004, 33, 1556–1557.Google Scholar
- 303.S. Yamaguchi, S. Nagatomo, T. Kitagawa, Y. Funahashi, T. Ozawa, K. Jitsukawa, H. Masuda, Inorg. Chem. 2003, 42, 6968–6970.PubMedGoogle Scholar
- 304.T. Fujii, A. Naito, S. Yamaguchi, A. Wada, Y. Funahashi, K. Jitsukawa, S. Nagatomo, T. Kitagawa, H. Masuda, Chem. Commun. 2003, 2700–2701.Google Scholar
- 305.D. Maiti, A. A. Narducci Sarjeant, K. D. Karlin, J. Am. Chem. Soc. 2007, 129, 6720–6721.PubMedGoogle Scholar
- 306.D. Maiti, H. R. Lucas, A. A. N. Sarjeant, K. D. Karlin, J. Am. Chem. Soc. 2007, 129, 6998–6999.PubMedGoogle Scholar
- 307.T. Kamachi, Y.-M. Lee, T. Nishimi, J. Cho, K. Yoshizawa, W. Nam, J. Phys. Chem. A 2008, 112, 13102–13108.Google Scholar
- 308.A. Kunishita, H. Ishimaru, S. Nakashima, T. Ogura, S. Itoh, J. Am. Chem. Soc. 2008, 130, 4244–4245.PubMedGoogle Scholar
- 309.T. Tano, M. Z. Ertem, S. Yamaguchi, A. Kunishita, H. Sugimoto, N. Fujieda, T. Ogura, C. J. Cramer, S. Itoh, Dalton Trans. 2011, 40, 10326.PubMedGoogle Scholar
- 310.S. Hong, S. M. Huber, L. Gagliardi, C. J. Cramer, W. B. Tolman, J. Am. Chem. Soc. 2007, 129, 14190–14192.PubMedCentralPubMedGoogle Scholar
- 311.S. M. Huber, M. Z. Ertem, F. Aquilante, L. Gagliardi, W. B. Tolman, C. J. Cramer, Chem. Eur. J. 2009, 15, 4886–4895.PubMedCentralPubMedGoogle Scholar
- 312.D. Das, Y.-M. Lee, K. Ohkubo, W. Nam, K. D. Karlin, S. Fukuzumi, J. Am. Chem. Soc. 2013, 135, 2825–2834.PubMedCentralPubMedGoogle Scholar
- 313.M. Cvetkovic, S. R. Batten, B. Moubaraki, K. S. Murray, L. Spiccia, Inorg. Chim. Acta 2001, 324, 131–140.Google Scholar
- 314.M. Reglier, E. Amadei, R. Tadayoni, B. Waegell, J. Chem. Soc., Chem. Commun. 1989, 447–450.Google Scholar
- 315.T. Kametani, M. Ihara, J. Chem. Soc., Perkin Trans. I 1980, 629–632.Google Scholar
- 316.P. Capdevielle, D. Sparfel, J. Baranne-Lafont, N. K. Cuong, M. Maumy, J. Chem. Soc., Chem. Commun. 1990, 565–566.Google Scholar
- 317.O. Reinaud, P. Capdevielle, M. Maumy, J. Chem. Soc., Chem. Commun. 1990, 566–568.Google Scholar
- 318.O. Reinaud, P. Capdevielle, M. Maumy, J. Mol. Cat. 1991, 68, L13–L15.Google Scholar
- 319.G. Rousselet, P. Capdevielle, M. Maumy, Tetrahedron Lett. 1995, 36, 4999–5002.Google Scholar
- 320.W. Buijs, P. Comba, D. Corneli, H. Pritzkow, J. Organomet. Chem. 2002, 641, 71–80.Google Scholar
- 321.P. Comba, S. Knoppe, B. Martin, G. Rajaraman, C. Rolli, B. Shapiro, T. Stork, Chem. Eur. J. 2008, 14, 344–357.PubMedGoogle Scholar
- 322.S. Hong, A. K. Gupta, W. B. Tolman, Inorg. Chem. 2009, 48, 6323–6325.PubMedCentralPubMedGoogle Scholar
- 323.P. J. Donoghue, J. Tehranchi, C. J. Cramer, R. Sarangi, E. I. Solomon, W. B. Tolman, J. Am. Chem. Soc. 2011, 133, 17602–17605.PubMedCentralPubMedGoogle Scholar
- 324.J. Tehranchi, P. J. Donoghue, C. J. Cramer, W. B. Tolman, Eur. J. Inorg. Chem. 2013, 4077–4084.Google Scholar
- 325.K. A. Magnus, H. Ton-That, J. E. Carpenter, Chem. Rev. 1994, 94, 727–735.Google Scholar
- 326.M. E. Cuff, K. I. miller, K. E. v. Holde, W. A. Hendrickson, J. Mol. Biol. 1998, 278, 855–870.Google Scholar
- 327.Y. Matoba, T. Kumagai, A. Yamamoto, H. Yoshitsu, M. Sugiyama, J. Biol. Chem. 2006, 281, 8981–8990.PubMedGoogle Scholar
- 328.A. Rompel, H. Fischer, D. Meiwes, K. B. Karentzopoulos, R. Dillinger, F. Tuczek, H. Witzel, B. Krebs, J. Biol. Inorg. Chem. 1999, 4, 56– 63.PubMedGoogle Scholar
- 329.N. Hakulinen, C. Gasparetti, H. Kaljunen, K. Kruus, J. Rouvinen, J. Biol. Inorg. Chem. 2013, 18, 917–929.PubMedGoogle Scholar
- 330.M. A. Culpepper, A. C. Rosenzweig, Crit. Rev. Biochem. Mol. Biol. 2012, 47, 483–492.PubMedCentralPubMedGoogle Scholar
- 331.S. I. Chan, S. S. F. Yu, Acc. Chem. Res. 2008, 41, 969–979.PubMedGoogle Scholar
- 332.M. A. Culpepper, G. E. Cutsail III, B. M. Hoffman, A. C. Rosenzweig, J. Am. Chem. Soc. 2012, 134, 7640–7643.PubMedCentralPubMedGoogle Scholar
- 333.K. Yoshizawa, Y. Shiota, J. Am. Chem. Soc. 2006, 128, 9873–9881.PubMedGoogle Scholar
- 334.Y. Shiota, K. Yoshizawa, Inorg. Chem. 2009, 48, 838–845.PubMedGoogle Scholar
- 335.R. A. Himes, K. D. Karlin, Curr. Opin. Chem. Biol. 2009, 13, 119–131.PubMedCentralPubMedGoogle Scholar
- 336.P. Vanelderen, R. G. Hadt, P. J. Smeets, E. I. Solomon, R. A. Schoonheydt, B. F. Sels, J. Catal. 2011, 284, 157–164.PubMedCentralPubMedGoogle Scholar
- 337.P. Vanelderen, J. Vancauwenbergh, B. F. Sels, R. A. Schoonheydt, Coord. Chem. Rev. 2013, 257, 483–494.Google Scholar
- 338.L. Que, Jr., W. B. Tolman, Angew. Chem. Int. Ed. 2002, 41, 1114–1137.Google Scholar
- 339.L. Hatcher, K. D. Karlin, J. Biol. Inorg. Chem. 2004, 9, 669–683.PubMedGoogle Scholar
- 340.M. Rolff, J. Schottenheim, H. Decker, F. Tuczek, Chem. Soc. Rev. 2011, 40, 4077–4098.PubMedGoogle Scholar
- 341.S. Fukuzumi, K. D. Karlin, Coord. Chem. Rev. 2013, 257, 187–195.PubMedCentralPubMedGoogle Scholar
- 342.A. Jozwiuk, E. A. Ünal, S. Leopold, J. P. Boyd, M. Haryono, N. Kurowski, F. V. Escobar, P. Hildebrandt, J. Lach, F. W. Heinemann, D. Wiedemann, E. Irran, A. Grohmann, Eur. J. Inorg. Chem. 2012, 3000–3013.Google Scholar
- 343.C. Citek, C. T. Lyons, E. C. Wasinger, T. D. P. Stack, Nature Chem. 2012, 4, 317–322.Google Scholar
- 344.J. Matsumoto, Y. Kajita, H. Masuda, Eur. J. Inorg. Chem. 2012, 4149–4158.Google Scholar
- 345.Y. Kajita, H. Arii, T. Saito, Y. Saito, S. Nagatomo, T. Kitagawa, Y. Funahashi, T. Ozawa, H. Masuda, Inorg. Chem. 2007, 46, 3322–3335.PubMedGoogle Scholar
- 346.A. Hoffmann, C. Citek, S. Binder, A. Goos, M. Rübhausen, O. Troeppner, I. Ivanovic-Burmazovic, E. C. Wasinger, T. D. P. Stack, S. Herres-Pawlis, Angew. Chem. Int. Ed. 2013, 52, 5398–5401.Google Scholar
- 347.I. Garcia-Bosch, X. Ribas, M. Costas, Chem. Eur. J. 2012, 18, 2113–2122.PubMedGoogle Scholar
- 348.P. Comba, C. Haaf, S. Helmle, K. D. Karlin, S. Pandian, A. Waleska, Inorg. Chem. 2012, 51, 2841–2851.PubMedCentralPubMedGoogle Scholar
- 349.P. Comba, B. Martin, A. Muruganantham, J. Straub, Inorg. Chem. 2012, 51, 9214–9225.PubMedGoogle Scholar
- 350.B. F. Gherman, C. J. Cramer, Coord. Chem. Rev. 2009, 253, 723–753.Google Scholar
- 351.D. G. Liakos, F. Neese, J. Chem. Theor. Comp. 2011, 7, 1511–1523.Google Scholar
- 352.M. Rohrmüller, S. Herres-Pawlis, M. Witte, W. G. Schmidt, J. Comp. Chem. 2013, 34, 1035–1045.Google Scholar
- 353.Y.-F. Liu, J.-G. Yu, P. E. M. Siegbahn, M. R. A. Blomberg, Chem. Eur. J. 2013, 19, 1942–1954.PubMedGoogle Scholar
- 354.L. M. Mirica, M. Vance, D. J. Rudd, B. Hedman, K. O. Hodgson, E. I. Solomon, T. D. P. Stack, Science 2005, 308, 1890–1892.PubMedGoogle Scholar
- 355.B. T. Op’t Holt, M. A. Vance, L. M. Mirica, D. E. Heppner, T. D. P. Stack, E. I. Solomon, J. Am. Chem. Soc. 2009, 131, 6421–6438.PubMedCentralPubMedGoogle Scholar
- 356.S. Mandal, J. Mukherjee, F. Lloret, R. Mukherjee, Inorg. Chem. 2012, 51, 13148–13161.PubMedGoogle Scholar
- 357.M. F. Qayyum, R. Sarangi, K. Fujisawa, T. D. P. Stack, K. D. Karlin, K. O. Hodgson, B. Hedman, E. I. Solomon, J. Am. Chem. Soc. 2013, 135, 17417–17431.PubMedCentralPubMedGoogle Scholar
- 358.P. Haack, C. Limberg, Angew. Chem. Int. Ed., 2014, 53, 4282–4293.Google Scholar
- 359.K. D. Karlin, Y. Gultneh, J. C. Hayes, J. Zubieta, Inorg. Chem. 1984, 23, 519–521.Google Scholar
- 360.I. Sanyal, M. Mahroof-Tahir, M. S. Nasir, P. Ghosh, B. I. Cohen, Y. Gultneh, R. W. Cruse, A. Farooq, K. D. Karlin, S. Liu, J. Zubieta, Inorg. Chem. 1992, 31, 4322–4332.Google Scholar
- 361.H. V. Obias, Y. Lin, N. N. Murthy, E. Pidcock, E. I. Solomon, M. Ralle, N. J. Blackburn, Y.-M. Neuhold, A. D. Zuberbühler, K. D. Karlin, J. Am. Chem. Soc. 1998, 120, 12960–12961.Google Scholar
- 362.N. Kitajima, T. Koda, S. Hashimoto, T. Kitagawa, Y. Moro-oka, J. Am. Chem. Soc. 1991, 113, 5664–5671.Google Scholar
- 363.P. Haack, C. Limberg, K. Ray, B. Braun, U. Kuhlmann, P. Hildebrandt, C. Herwig, Inorg. Chem. 2011, 50, 2133–2142.PubMedGoogle Scholar
- 364.P. Haack, A. Kärgel, C. Greco, J. Dokic, B. Braun, F. F. Pfaff, S. Mebs, K. Ray, C. Limberg, J. Am. Chem. Soc. 2013, 135, 16148–16160.PubMedCentralPubMedGoogle Scholar
- 365.P. P. Y. Chen, R. B. G. Yang, J. C. M. Lee, S. I. Chan, Proc. Natl. Acad. Sci. USA 2007, 104, 14570–14575.PubMedCentralPubMedGoogle Scholar
- 366.A. M. Kirillov, M. V. Kirillova, A. J. L. Pombeiro, Coord. Chem. Rev. 2012, 256, 2741–2759.Google Scholar
- 367.A. M. Kirillov, M. V. Kirillova, A. J. L. Pombeiro, Adv. Inorg. Chem. 2013, 65, 1–31.Google Scholar
- 368.S. Maji, J. C. M. Lee, Y.-J. Lu, C.-L. Chen, M.-C. Hung, P. P. Y. Chen, S. S. F. Yu, S. I. Chan, Chem. Eur. J. 2012, 18, 3955–3968.PubMedGoogle Scholar
- 369.P. Nagababu, S. Maji, M. P. Kumar, P. P. Y. Chen, S. S. F. Yu, S. I. Chan, Adv. Synth. Catal. 2012, 354, 3275–3282.Google Scholar
- 370.S. I. Chan, Y.-J. Lu, P. Nagababu, S. Maji, M.-C. Hung, M. M. Lee, I. J. Hsu, P. D. Minh, J. C. H. Lai, K. Y. Ng, S. Ramalingam, S. S. F. Yu, M. K. Chan, Angew. Chem. Int. Ed. 2013, 52, 3731–3735.Google Scholar
- 371.A. P. Cole, D. E. Root, P. Mukherjee, E. I. Solomon, T. D. P. Stack, Science 1996, 273, 1848–1850.PubMedGoogle Scholar
- 372.D. E. Root, M. J. Henson, T. Machonkin, P. Mukherjee, T. D. P. Stack, E. I. Solomon, J. Am. Chem. Soc. 1998, 120, 4982–4990.Google Scholar
- 373.T. Machonkin, P. Mukherjee, M. Henson, T. D. P. Stack, E. I. Solomon, Inorg. Chim. Acta 2002, 341, 39–44.Google Scholar
- 374.M. Taki, S. Teramae, S. Nagatomo, Y. Tachiu, T. Kitagawa, S. Itoh, S. Fukuzumi, J. Am. Chem. Soc. 2002, 124, 6367–6377.PubMedGoogle Scholar
- 375.A. K. Gupta, W. B. Tolman, Inorg. Chem. 2012, 51, 1881–1888.PubMedCentralPubMedGoogle Scholar
- 376.D. Lionetti, M. W. Day, T. Agapie, Chem. Sci. 2013, 4, 785–790.PubMedCentralPubMedGoogle Scholar