Advertisement

Light-Dependent Production of Dioxygen in Photosynthesis

  • Junko Yano
  • Jan Kern
  • Vittal K. YachandraEmail author
  • Håkan Nilsson
  • Sergey Koroidov
  • Johannes Messinger
Chapter
Part of the Metal Ions in Life Sciences book series (MILS, volume 15)

Abstract

Oxygen, that supports all aerobic life, is abundant in the atmosphere because of its constant regeneration by photosynthetic water oxidation, which is catalyzed by a Mn4CaO5 cluster in photosystem II (PS II), a multi subunit membrane protein complex. X-ray and other spectroscopy studies of the electronic and geometric structure of the Mn4CaO5 cluster as it advances through the intermediate states have been important for understanding the mechanism of water oxidation. The results and interpretations, especially from X-ray spectroscopy studies, regarding the geometric and electronic structure and the changes as the system proceeds through the catalytic cycle will be summarized in this review. This review will also include newer methodologies in time-resolved X-ray diffraction and spectroscopy that have become available since the commissioning of the X-ray free electron laser (XFEL) and are being applied to study the oxygen-evolving complex (OEC). The femtosecond X-ray pulses of the XFEL allows us to outrun X-ray damage at room temperature, and the time-evolution of the photo-induced reaction can be probed using a visible laser-pump followed by the X-ray-probe pulse. XFELs can be used to simultaneously determine the light-induced protein dynamics using crystallography and the local chemistry that occurs at the catalytic center using X-ray spectroscopy under functional conditions. Membrane inlet mass spectrometry has been important for providing direct information about the exchange of substrate water molecules, which has a direct bearing on the mechanism of water oxidation. Moreover, it has been indispensable for the time-resolved X-ray diffraction and spectroscopy studies and will be briefly reviewed in this chapter. Given the role of PS II in maintaining life in the biosphere and the future vision of a renewable energy economy, understanding the structure and mechanism of the photosynthetic water oxidation catalyst is an important goal for the future.

Keywords

calcium manganese oxygen-evolving complex membrane-inlet mass spectrometry photosystem II X-ray crystallography X-ray emission spectroscopy X-ray free electron laser 

Notes

Acknowledgments

The research reviewed here was supported by the NIH Grant GM 55302 (V.K.Y.) and the Director, Office of Science, Office of Basic Energy Sciences (OBES), Division of Chemical Sciences, Geosciences, and Biosciences of the Department of Energy (DOE) under Contract DE-AC02-05CH11231 (J.Y. and V.K.Y.). The Solar Fuels Strong Research Environment (Umeå University), the Artificial Leaf Project (K&A Wallenberg Foundation), VR and Energimyndigheten (J.M.), and the Human Frontier Research Grant, RGP0063/2013 (J.Y.) are acknowledged for supporting this project. The LCLS, and the synchrotron facilities at Stanford Synchrotron Radiation Lightsource (SSRL), the Advanced Light Source (ALS), and the Advanced Photon Source (APS), used in the course of these studies are all supported by DOE OBES. We thank all our students, postdoctoral fellows, and collaborators for their very important contributions to the PS II studies at LCLS, and the staff at LCLS for their support of the XFEL experiments.

References

  1. 1.
    Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase, Vol. 22 of Advances in Photosynthesis and Respiration, Eds T. Wydrzynski, S. Satoh, Springer, Dordrecht, 2005.Google Scholar
  2. 2.
    B. Kok, B. Forbush, M. McGloin, Photochem. Photobiol. 1970, 11, 457–475.CrossRefPubMedGoogle Scholar
  3. 3.
    G. Renger, J. Photochem. Photobiol. B Biol. 2011, 104, 35–43.CrossRefGoogle Scholar
  4. 4.
    N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauß, W. Saenger, P. Orth, Nature 2001, 409, 739–743.CrossRefPubMedGoogle Scholar
  6. 6.
    N. Kamiya, J. R. Shen, Proc. Natl. Acad. Sci. USA 2003, 100, 98–103.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Science 2004, 303, 1831–1838.CrossRefPubMedGoogle Scholar
  8. 8.
    B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Nature 2005, 438, 1040–1044.CrossRefPubMedGoogle Scholar
  9. 9.
    A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Nature Struct. Mol. Biol. 2009, 16, 334–342.CrossRefGoogle Scholar
  10. 10.
    Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 2011, 473, 55–60.CrossRefPubMedGoogle Scholar
  11. 11.
    V. K. Yachandra, K. Sauer, M. P. Klein, Chem. Rev. 1996, 96, 2927–2950.CrossRefPubMedGoogle Scholar
  12. 12.
    J. Yano, V. K. Yachandra, Inorg. Chem. 2008, 47, 1711–1726.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    J. Yano, V. K. Yachandra, Chem. Rev. 2014, 114, 4175–4205.CrossRefPubMedGoogle Scholar
  14. 14.
    N. Cox, D. A. Pantazis, F. Neese, W. Lubitz, Acc. Chem. Res. 2013, 46, 1588–1596.CrossRefPubMedGoogle Scholar
  15. 15.
    A. Haddy, Photosynth. Res. 2007, 92, 357–368.CrossRefPubMedGoogle Scholar
  16. 16.
    G. W. Brudvig, Phil. Trans. Roy. Soc. B-Biol. Sci. 2008, 363, 1211–1218.CrossRefGoogle Scholar
  17. 17.
    T. Noguchi, H. Suzuki, M. Tsuno, M. Sugiura, C. Kato, Biochemistry 2012, 51, 3205–3214.CrossRefPubMedGoogle Scholar
  18. 18.
    F. Rappaport, N. Ishida, M. Sugiura, A. Boussac, Energ. Environ. Sci. 2011, 4, 2520–2524.CrossRefGoogle Scholar
  19. 19.
    H. Dau, M. Haumann, Coord. Chem. Rev. 2008, 252, 273–295.CrossRefGoogle Scholar
  20. 20.
    C. Glöckner, J. Kern, M. Broser, A. Zouni, V. Yachandra, J. Yano, J. Biol. Chem. 2013, 288, 22607–22620.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    J. Yano, Y. Pushkar, P. Glatzel, A. Lewis, K. Sauer, J. Messinger, U. Bergmann, V. K. Yachandra, J. Am. Chem. Soc. 2005, 127, 14974–14975.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Y. Pushkar, J. Yano, P. Glatzel, J. Messinger, A. Lewis, K. Sauer, U. Bergmann, V. Yachandra, J. Biol. Chem. 2007, 282, 7198–7208.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    J. Yano, J. Kern, K. Sauer, M. Latimer, Y. Pushkar, J. Biesiadka, B. Loll, W. Saenger, J. Messinger, A. Zouni, V. K. Yachandra, Science 2006, 314, 821–825.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    M. J. Latimer, V. J. DeRose, I. Mukerji, V. K. Yachandra, K. Sauer, M. P. Klein, Biochemistry 1995, 34, 10898–10909.CrossRefPubMedGoogle Scholar
  25. 25.
    R. M. Cinco, K. L. M. Holman, J. H. Robblee, J. Yano, S. A. Pizarro, E. Bellacchio, K. Sauer, V. K. Yachandra, Biochemistry 2002, 41, 12928–12933.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    R. M. Cinco, J. H. Robblee, A. Rompel, C. Fernandez, V. K. Yachandra, K. Sauer, M. P. Klein, J. Phys. Chem. B 1998, 102, 8248–8256.CrossRefGoogle Scholar
  27. 27.
    R. M. Cinco, J. H. Robblee, J. Messinger, C. Fernandez, K. L. M. Holman, K. Sauer, V. K. Yachandra, Biochemistry 2004, 43, 13271–13282.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Y. Pushkar, J. Yano, K. Sauer, A. Boussac, V. K. Yachandra, Proc. Natl. Acad. Sci. USA 2008, 105, 1879–1884.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    J. Yano, J. Kern, K.-D. Irrgang, M. J. Latimer, U. Bergmann, P. Glatzel, Y. Pushkar, J. Biesiadka, B. Loll, K. Sauer, J. Messinger, A. Zouni, V. K. Yachandra, Proc. Natl. Acad. Sci. USA 2005, 102, 12047–12052.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    M. Grabolle, M. Haumann, C. Muller, P. Liebisch, H. Dau, J. Biol. Chem. 2006, 281, 4580–4588.CrossRefPubMedGoogle Scholar
  31. 31.
    J. Messinger, J. H. Robblee, U. Bergmann, C. Fernandez, P. Glatzel, H. Visser, R. M. Cinco, K. L. McFarlane, E. Bellacchio, S. A. Pizarro, S. P. Cramer, K. Sauer, M. P. Klein, V. K. Yachandra, J. Am. Chem. Soc. 2001, 123, 7804–7820.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    M. Haumann, C. Muller, P. Liebisch, L. Iuzzolino, J. Dittmer, M. Grabolle, T. Neisius, W. Meyer-Klaucke, H. Dau, Biochemistry 2005, 44, 1894–1908.CrossRefPubMedGoogle Scholar
  33. 33.
    L. V. Kulik, B. Epel, W. Lubitz, J. Messinger, J. Am. Chem. Soc. 2005, 127, 2392–2393.CrossRefPubMedGoogle Scholar
  34. 34.
    L. V. Kulik, B. Epel, W. Lubitz, J. Messinger, J. Am. Chem. Soc. 2007, 129, 13421–13435.CrossRefPubMedGoogle Scholar
  35. 35.
    P. E. M. Siegbahn, Acc. Chem. Res. 2009, 42, 1871–1880.CrossRefPubMedGoogle Scholar
  36. 36.
    K. Yamaguchi, H. Isobe, S. Yamanaka, T. Saito, K. Kanda, M. Shoji, Y. Umena, K. Kawakami, J. R. Shen, N. Kamiya, M. Okumura, Int. J. Quantum Chem. 2013, 113, 525–541.CrossRefGoogle Scholar
  37. 37.
    H. A. Chu, W. Hillier, R. J. Debus, Biochemistry 2004, 43, 3152–3166.CrossRefPubMedGoogle Scholar
  38. 38.
    N. Cox, L. Rapatskiy, J. H. Su, D. A. Pantazis, M. Sugiura, L. Kulik, P. Dorlet, A. W. Rutherford, F. Neese, A. Boussac, W. Lubitz, J. Messinger, J. Am. Chem. Soc. 2011, 133, 3635–3648.CrossRefPubMedGoogle Scholar
  39. 39.
    J. H. Su, N. Cox, W. Ames, D. A. Pantazis, L. Rapatskiy, T. Lohmiller, L. V. Kulik, P. Dorlet, A. W. Rutherford, F. Neese, A. Boussac, W. Lubitz, J. Messinger, Biochim. Biophys. Acta 2011, 1807, 829–840.CrossRefPubMedGoogle Scholar
  40. 40.
    L. Kulik, B. Epel, J. Messinger, W. Lubitz, Photosynth. Res. 2005, 84, 347–353.CrossRefPubMedGoogle Scholar
  41. 41.
    J. H. Robblee, J. Messinger, R. M. Cinco, K. L. McFarlane, C. Fernandez, S. A. Pizarro, K. Sauer, V. K. Yachandra, J. Am. Chem. Soc. 2002, 124, 7459–7471.CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    P. Glatzel, U. Bergmann, J. Yano, H. Visser, J. H. Robblee, W. W. Gu, F. M. F. de Groot, G. Christou, V. L. Pecoraro, S. P. Cramer, V. K. Yachandra, J. Am. Chem. Soc. 2004, 126, 9946–9959.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    P. Glatzel, H. Schroeder, Y. Pushkar, T. Boron, III, S. Mukherjee, G. Christou, V. L. Pecoraro, J. Messinger, V. K. Yachandra, U. Bergmann, J. Yano, Inorg. Chem. 2013, 52, 5642–5644.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    W. C. Liang, T. A. Roelofs, R. M. Cinco, A. Rompel, M. J. Latimer, W. O. Yu, K. Sauer, M. P. Klein, V. K. Yachandra, J. Am. Chem. Soc. 2000, 122, 3399–3412.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    W. Ames, D. A. Pantazis, V. Krewald, N. Cox, J. Messinger, W. Lubitz, F. Neese, J. Am. Chem. Soc. 2011, 133, 19743–19757.CrossRefPubMedGoogle Scholar
  46. 46.
    A. Boussac, A. W. Rutherford, Biochemistry 1988, 27, 3476–3483.CrossRefGoogle Scholar
  47. 47.
    D. F. Ghanotakis, G. T. Babcock, C. F. Yocum, FEBS Lett. 1984, 167, 127–130.CrossRefGoogle Scholar
  48. 48.
    T. Lohmiller, N. Cox, J.-H. Su, J. Messinger, W. Lubitz, J. Biol. Chem. 2012, 287, 24721–24733.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    C. F. Yocum, Coord. Chem. Rev. 2008, 252, 296–305.CrossRefGoogle Scholar
  50. 50.
    J. Yano, L. M. Walker, M. A. Strickler, R. J. Service, V. K. Yachandra, R. J. Debus, J. Biol. Chem. 2011, 286, 9257–9267.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    K. G. V. Sigfridsson, P. Chernev, N. Leidel, A. Popovic-Bijelic, A. Gräslund, M. Haumann, J. Biol. Chem. 2013, 288, 9648–9661.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    K. D. Daughtry, Y. Xiao, D. Stoner-Ma, E. Cho, A. M. Orville, P. Liu, K. N. Allen, J. Am. Chem. Soc. 2012, 134, 2823–2834.CrossRefPubMedGoogle Scholar
  53. 53.
    S. V. Antonyuk, M. A. Hough, Biochim. Biophys. Acta-Proteins and Proteomics 2011, 1814, 778–784.CrossRefGoogle Scholar
  54. 54.
    H.-P. Hersleth, K. K. Andersson, Biochim. Biophys. Acta-Proteins and Proteomics 2011, 1814, 785–796.CrossRefGoogle Scholar
  55. 55.
    M. Haumann, P. Liebisch, C. Muller, M. Barra, M. Grabolle, H. Dau, Science 2005, 310, 1019–1021.CrossRefPubMedGoogle Scholar
  56. 56.
    F. Rappaport, M. Blancharddesce, J. Lavergne, Biochim. Biophys. Acta-Bioenerg. 1994, 1184, 178–192.CrossRefGoogle Scholar
  57. 57.
    M. R. Razeghifard, R. J. Pace, Biochemistry 1999, 38, 1252–1257.CrossRefPubMedGoogle Scholar
  58. 58.
    R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 2000, 406, 752–757.CrossRefPubMedGoogle Scholar
  59. 59.
    H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, R. B. Doak, F. R. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Homke, C. Reich, D. Pietschner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K. U. Kuhnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jonsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C. D. Schroter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Wang, I. Grotjohann, J. M. Holton, T. R. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, J. C. H. Spence, Nature 2011, 470, 73–77.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    S. Boutet, L. Lomb, G. J. Williams, T. R. M. Barends, A. Aquila, R. B. Doak, U. Weierstall, D. P. DePonte, J. Steinbrener, R. L. Shoeman, M. Messerschmidt, A. Barty, T. A. White, S. Kassemeyer, R. A. Kirian, M. M. Seibert, P. A. Montanez, C. Kenney, R. Herbst, P. Hart, J. Pines, G. Haller, S. M. Gruner, H. T. Philipp, M. W. Tate, M. Hromalik, L. J. Koerner, N. van Bakel, J. Morse, W. Ghonsalves, D. Arnlund, M. J. Bogan, C. Caleman, R. Fromme, C. Y. Hampton, M. S. Hunter, L. C. Johansson, G. Katona, C. Kupitz, M. Liang, A. V. Martin, K. Nass, L. Redecke, F. Stellato, N. Timneanu, D. Wang, N. A. Zatsepin, D. Schafer, J. Defever, R. Neutze, P. Fromme, J. C. H. Spence, H. N. Chapman, I. Schlichting, Science 2012, 337, 362–364.CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    P. Glatzel, U. Bergmann, Coord. Chem. Rev. 2005, 249, 65–95.CrossRefGoogle Scholar
  62. 62.
    R. Alonso-Mori, J. Kern, D. Sokaras, T.-C. Weng, D. Nordlund, R. Tran, P. Montanez, J. Delor, V. K. Yachandra, J. Yano, U. Bergmann, Rev. Sci. Instrum. 2012, 83, 073114.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    R. Alonso-Mori, J. Kern, R. J. Gildea, D. Sokaras, T.-C. Weng, B. Lassalle-Kaiser, T. Rosalie, J. Hattne, H. Laksmono, J. Hellmich, C. Gloeckner, N. Echols, R. G. Sierra, D. W. Schafer, J. Sellberg, C. Kenney, R. Herbst, J. Pines, P. Hart, S. Herrmann, R. W. Grosse-Kunstleve, M. J. Latimer, A. R. Fry, M. M. Messerschmidt, A. Miahnahri, M. M. Seibert, P. H. Zwart, W. E. White, P. D. Adams, M. J. Bogan, S. Boutet, G. J. Williams, A. Zouni, J. Messinger, P. Glatzel, N. K. Sauter, V. K. Yachandra, J. Yano, U. Bergmann, Proc. Natl. Acad. Sci. USA 2012, 109, 19103–19107.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    J. Hattne, N. Echols, R. Tran, J. Kern, R. J. Gildea, A. S. Brewster, R. Alonso-Mori, C. Glöckner, J. Hellmich, H. Laksmono, R. G. Sierra, B. Lassalle-Kaiser, A. Lampe, G. Han, S. Gul, D. DiFiore, D. Milathianaki, A. R. Fry, A. Miahnahri, W. E. White, D. W. Schafer, M. M. Seibert, J. E. Koglin, D. Sokaras, T.-C. Weng, J. Sellberg, M. J. Latimer, P. Glatzel, P. H. Zwart, R. W. Grosse-Kunstleve, M. J. Bogan, M. Messerschmidt, G. J. Williams, S. Boutet, J. Messinger, A. Zouni, J. Yano, U. Bergmann, V. K. Yachandra, P. D. Adams, N. K. Sauter, Nature Methods 2014, 11, 545–548.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    R. G. Sierra, H. Laksmono, J. Kern, R. Tran, J. Hattne, R. Alonso-Mori, B. Lassalle-Kaiser, C. Glockner, J. Hellmich, D. W. Schafer, N. Echols, R. J. Gildea, R. W. Grosse-Kunstleve, J. Sellberg, T. A. McQueen, A. R. Fry, M. M. Messerschmidt, A. Miahnahri, M. M. Seibert, C. Y. Hampton, D. Starodub, N. D. Loh, D. Sokaras, T.-C. Weng, P. H. Zwart, P. Glatzel, D. Milathianaki, W. E. White, P. D. Adams, G. J. Williams, S. Boutet, A. Zouni, J. Messinger, N. K. Sauter, U. Bergmann, J. Yano, V. K. Yachandra, M. J. Bogan, Acta Cryst. D 2012, 68, 1584–1587.CrossRefGoogle Scholar
  66. 66.
    J. Kern, R. Alonso-Mori, J. Hellmich, R. Tran, J. Hattne, H. Laksmono, C. Glöckner, N. Echols, R. G. Sierra, J. Sellberg, B. Lassalle-Kaiser, R. J. Gildea, P. Glatzel, R. W. Grosse-Kunstleve, M. J. Latimer, T. A. McQueen, D. DiFiore, A. R. Fry, M. Messerschmidt, A. Miahnahri, D. W. Schafer, M. M. Seibert, D. Sokaras, T. C. Weng, P. H. Zwart, W. E. White, P. D. Adams, M. J. Bogan, S. Boutet, G. J. Williams, J. Messinger, N. K. Sauter, A. Zouni, U. Bergmann, J. Yano, V. K. Yachandra, Proc. Natl. Acad. Sci. USA 2012, 109, 9721–9726.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    J. Kern, R. Alonso-Mori, R. Tran, J. Hattne, R. J. Gildea, N. Echols, C. Glöckner, J. Hellmich, H. Laksmono, R. G. Sierra, B. Lassalle-Kaiser, S. Koroidov, A. Lampe, G. Han, S. Gul, D. DiFiore, D. Milathianaki, A. R. Fry, A. Miahnahri, D. W. Schafer, M. Messerschmidt, M. M. Seibert, J. E. Koglin, D. Sokaras, T.-C. Weng, J. Sellberg, M. J. Latimer, R. W. Grosse-Kunstleve, P. H. Zwart, W. E. White, P. Glatzel, P. D. Adams, M. J. Bogan, G. J. Williams, S. Boutet, J. Messinger, A. Zouni, N. K. Sauter, V. K. Yachandra, U. Bergmann, J. Yano, Science 2013, 340, 491–495.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    R. Henderson, Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 1990, 241, 6–8.CrossRefGoogle Scholar
  69. 69.
    R. L. Owen, E. Rudino-Pinera, E. F. Garman, Proc. Natl. Acad. Sci. USA 2006, 103, 4912–4917.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    A. Barty, C. Caleman, A. Aquila, N. Timneanu, L. Lomb, T. A. White, J. Andreasson, D. Arnlund, S. Bajt, T. R. M. Barends, M. Barthelmess, M. J. Bogan, C. Bostedt, J. D. Bozek, R. Coffee, N. Coppola, J. Davidsson, D. P. DePonte, R. B. Doak, T. Ekeberg, V. Elser, S. W. Epp, B. Erk, H. Fleckenstein, L. Foucar, P. Fromme, H. Graafsma, L. Gumprecht, J. Hajdu, C. Y. Hampton, R. Hartmann, A. Hartmann, G. Hauser, H. Hirsemann, P. Holl, M. S. Hunter, L. Johansson, S. Kassemeyer, N. Kimmel, R. A. Kirian, M. N. Liang, F. Maia, E. Malmerberg, S. Marchesini, A. V. Martin, K. Nass, R. Neutze, C. Reich, D. Rolles, B. Rudek, A. Rudenko, H. Scott, I. Schlichting, J. Schulz, M. M. Seibert, R. L. Shoeman, R. G. Sierra, H. Soltau, J. C. H. Spence, F. Stellato, S. Stern, L. Struder, J. Ullrich, X. Wang, G. Weidenspointner, U. Weierstall, C. B. Wunderer, H. N. Chapman, Nature Photonics 2012, 6, 35–40.Google Scholar
  71. 71.
    L. Konermann, J. Messinger, W. Hillier, in Biophysical Techniques in Photosynthesis, Eds J. Amesz, A. J. Hoff, Springer, Dordrecht, 2008, pp. 167–190.Google Scholar
  72. 72.
    K. Beckmann, J. Messinger, M. R. Badger, T. Wydrzynski, W. Hillier, Photosynth. Res. 2009, 102, 511–522.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    D. Shevela, J. Messinger, Front. Plant Sci. 2013, 4.Google Scholar
  74. 74.
    K. P. Bader, G. Renger, G. H. Schmid, Photosynth. Res. 1993, 38, 355–361.CrossRefPubMedGoogle Scholar
  75. 75.
    R. Radmer, O. Ollinger, FEBS Letts. 1986, 195, 285–289.CrossRefGoogle Scholar
  76. 76.
    J. Messinger, M. Badger, T. Wydrzynski, Proc. Natl. Acad. Sci. USA 1995, 92, 3209–3213.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    W. Hillier, J. Messinger, T. Wydrzynski, Biochemistry 1998, 37, 16908–16914.CrossRefPubMedGoogle Scholar
  78. 78.
    W. Hillier, T. Wydrzynski, Biochemistry 2000, 39, 4399–4405.CrossRefPubMedGoogle Scholar
  79. 79.
    G. Hendry, T. Wydrzynski, Biochemistry 2003, 42, 6209–6217.CrossRefPubMedGoogle Scholar
  80. 80.
    W. Hillier, T. Wydrzynski, Phys. Chem. Chem. Phys. 2004, 6, 4882–4889.CrossRefGoogle Scholar
  81. 81.
    W. Hillier, T. Wydrzynski, Coord. Chem. Rev. 2008, 252, 306–317.CrossRefGoogle Scholar
  82. 82.
    N. Cox, J. Messinger, Biochim. Biophys. Acta 2013, 1827, 1020–1030.CrossRefPubMedGoogle Scholar
  83. 83.
    J. Messinger, Phys. Chem. Chem. Phys. 2004, 6, 4764–4771.CrossRefGoogle Scholar
  84. 84.
    H. Nilsson, T. Krupnik, J. Kargul, J. Messinger, Biochim. Biophys. Acta-Bioenerg. 2014, 1837, 1257–1262.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Junko Yano
    • 1
  • Jan Kern
    • 1
  • Vittal K. Yachandra
    • 1
    Email author
  • Håkan Nilsson
    • 2
  • Sergey Koroidov
    • 2
  • Johannes Messinger
    • 2
  1. 1.Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.Department of Chemistry, Chemistry Biology Centre (KBC)Umeå UniversityUmeåSweden

Personalised recommendations