Advertisement

The Magic of Dioxygen

  • Martha E. Sosa Torres
  • Juan P. Saucedo-Vázquez
  • Peter M. H. KroneckEmail author
Part of the Metal Ions in Life Sciences book series (MILS, volume 15)

Abstract

Oxygen has to be considered one of the most important elements on Earth. Earlier, some dispute arose as to which of the three scientists, Carl Wilhelm Scheele (Sweden), Joseph Priestley (United Kingdom) or Antoine Lavoisier (France), should get credit for the air of life.

Today it is agreed that the Swede discovered it first, the fire air in 1772. The British chemist published it first, the dephlogisticated air in 1775, and the Frenchman understood it first, the oxygen in 1775–1778. Surely, there is credit enough for all three to split the “Nobel Prize” awarded by Carl Djerassi and Roald Hoffmann in their play Oxygen. Molecular oxygen means life. So-called aerobes – these include humans, animals, and plants – need O2 to conserve the energy they have to gain from their environment. Eliminate O2 and these organisms cannot support an active lifestyle. What makes dioxygen that special? It is a non-metal and oxidizing agent that readily reacts with most elements to form compounds, notably oxides. From a biological point of view, the most important compound of course is water, H2O, which provides an excellent solvent for biomolecules. It influences the climate of the Earth, and it is the source of almost all of the molecular oxygen in the atmosphere.

Keywords

Atmosphere banded iron formation dioxygen energy conservation evolution reactive oxygen species 

Notes

Acknowledgments

The authors are grateful for continuous financial support by Deutsche Forschungsgemeinschaft and Universität Konstanz (PK), and CONACYT and DGAPA-UNAM (MEST).

References

  1. 1.
    WebElements: the periodic table on the web – Oxygen; www.webelements.com
  2. 2.
    N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed, Butterworth-Heinemann, Oxford, UK, 1997.Google Scholar
  3. 3.
    A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions, IUPAC. Marcel Dekker, New York, USA, 1985.Google Scholar
  4. 4.
    J. Emsley, Oxygen. Nature’s Building Blocks: An A-Z Guide to the Elements, Oxford University Press, Oxford, UK, 2001, pp. 297–304.Google Scholar
  5. 5.
    R. Hoffmann, American Scientist 2004, 92, 23–26.CrossRefGoogle Scholar
  6. 6.
    P. Bert (first published in French in 1878, translated by M. A. Hitchcock, F. A. Hitchcock), Barometric Pressure: Researches in Experimental Physiology, College Book Company, Columbus, OH, USA, 1943.Google Scholar
  7. 7.
    D. N Patel, A. Goel, S. B. Agarwal, P. Garg, K. K Lakhani, J. Ind. Acad. Clin. Med. 2003, 4, 234–237.Google Scholar
  8. 8.
    D. L. Gilbert, Oxygen: An Overall Biological View, in Oxygen and Living Processes, Ed D. L. Gilbert, Springer-Verlag, New York, USA, 1981.Google Scholar
  9. 9.
    S. G. Jenkinson, New Horizons 1993, 1, 504–511.PubMedGoogle Scholar
  10. 10.
    J. Lorrain Smith, J. Physiol. (London: The Physiological Society and Blackwell Publishing) 1899, 24, 19–35.Google Scholar
  11. 11.
    E. Meirovithz, J. Sonn, A. Mayevsky, Brain Res. Rev. 2007, 294–304.Google Scholar
  12. 12.
    C. Djerassi, R. Hoffmann, J. Chem. Educ. 2001, 78, 283–284.CrossRefGoogle Scholar
  13. 13.
    Z. M. Lerman, Chem. Educ. Int. 2005, 6, 1–5.Google Scholar
  14. 14.
    C. Djerassi, R. Hoffmann, Oxygen, Wiley-VCH, Weinheim, Germany, 2001.Google Scholar
  15. 15.
    R. A. Kerr, Science 2013, 339, 1373.CrossRefPubMedGoogle Scholar
  16. 16.
    C. S. Cockell, Astrobiology 2014, 14, 182–203.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    R. M. Hazen, The Story of Earth. The First 4.5 Billion Years, from Stardust to Living Planet, Viking, New York, USA, 2012.Google Scholar
  18. 18.
    H. D. Holland, Phil. Trans. R. Soc. B 2006, 361, 903–915.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    N. H. Sleep, D. K. Bird, Phil. Trans. R. Soc. B 2008, 363, 2651–2664.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    L. R. Kump, Perspective 2012, 410–411; DOI:  10.2113/gselements. 8.6.410.
  21. 21.
    T W. Lyons, C. T. Reinhard, N. J. Planavsky, Nature 2014, 506, 307–315.Google Scholar
  22. 22.
    D. E. Canfield, Annu. Rev. Earth Planet. Sci. 2005, 33, 1–36.Google Scholar
  23. 23.
    S. A. Crowe, L. N. Døssing, N. J. Beukes, M. Bau, S. J. Kruger, R. Frei, D. E. Canfield, Nature 2013, 501, 535–538.CrossRefPubMedGoogle Scholar
  24. 24.
    D. P. Mellor, Chemistry 1964, 37, 12–16.Google Scholar
  25. 25.
    M. Dole, J. Gen. Physiol. 1965, 49, 5–27.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
  27. 27.
    J. F. Kasting, M. T. Howard, Phil. Trans. R. Soc. B 2006, 361, 1733–1742.CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    C. Zimmer, The Mystery of Earth’s Oxygen, in The New York Times, October 3, 2013.Google Scholar
  29. 29.
    V. Smil, Cycles of Life: Civilization and the Biosphere, Scientific American Library, W. H. Freeman and Company, New York, USA, 1997.Google Scholar
  30. 30.
    J. J. Ebelmen, Ann. Rev. Mines 1845, 12, 627–654.Google Scholar
  31. 31.
    R. A. Berner, D. J. Berling, R. Dudley, J. M. Robinson, R. A. Wildman, Jr., Ann. Rev. Earth Planet. Sci. 2003, 31, 105–134.CrossRefGoogle Scholar
  32. 32.
    P. M. H. Kroneck, Met. Ions Biol. Syst. 2005, 43, 1–10.Google Scholar
  33. 33.
    H. D. Holland, Geochim. Cosmochim. Acta 2002, 66, 3811–3826.CrossRefGoogle Scholar
  34. 34.
    Q. J. Guo, H. Strauss, A. J. Kaufman, S. Schröder, J. Gutzmer, B. Wing, M. A. Baker, A. Bekker, Q. S. Jin, S.-T. Kim, J. Farquhar, Geology 2009, 37, 399–402.CrossRefGoogle Scholar
  35. 35.
    A. D. Anbar, Y. Duan, T. W. Lyons, G. L. Arnold, B. Kendall, R. A. Creaser, A. J. Kaufman, G. W. Gordon, C. Scott, J. Garvin, R. Buick, Science 2007, 317, 1903–1906.CrossRefPubMedGoogle Scholar
  36. 36.
    M. A. Wilson, image freely available from Wikipedia for any purpose: http://commons.wikimedia.org/wiki/User:Wilson44691
  37. 37.
    N. J. Planavsky, D. Asael, A. Hofmann, C. T. Reinhard, S. V. Lalonde, A. Knudsen, X. Wang, F. Ossa Ossa, E. Pecoits, A. J. B. Smith, N. J. Beukes, A. Bekker, T. M. Johnson, K. O. Konhauser, T.W. Lyons, O. J. Rouxel, Nature Geoscience 2014, 7, 283–286.CrossRefGoogle Scholar
  38. 38.
    J. E. Johnson, S. M. Webb, K. Thomas, S. Ono, J. L. Kirschvink, W. W. Fischer, Proc. Natl. Acad. Sci. USA 2013, 110, 11238–11243.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    O. Warburg, Science 1956, 123, 309–314.CrossRefPubMedGoogle Scholar
  40. 40.
    I. Fridovich, J. Experimental Biology 1998, 201, 1203–1209.Google Scholar
  41. 41.
    J. S. Valentine, D. L. Wertz, T. J. Lyons, L.-L. Liou, J. J. Goto, E. Butler Gralla, Curr. Opin. Chem. Biol. 1998, 2, 253–262.CrossRefPubMedGoogle Scholar
  42. 42.
    G. Weissmann, FASEB J. 2010, 24, 649–652.CrossRefPubMedGoogle Scholar
  43. 43.
    R. Gerschman, D. L. Gilbert, S. W. Nye, P. Dwyer, W. O. Fenn, Science 1954, 119, 623–626.CrossRefPubMedGoogle Scholar
  44. 44.
    A.-L. Lavoisier, Traité Elémentaire de Chimie (1789), illustrated by Madame Lavoisier. in Lavoisier, Fourier, Faraday, Great Books of the Western World Series, Eds R. M. Hutchins, M. J. Adler, Encyclopædia Britannica, Inc., Chicago, USA, 1952, see A.-L. Lavoisier, 1–160.Google Scholar
  45. 45.
    F. Baymann, E. Lebrun, M. Brugna, B. Schoepp-Cothenet, M.-T. Giudici-Orticoni, W. Nitschke, Phil. Trans. Roy. Soc. Lond. B 2003, 358, 267–274.CrossRefGoogle Scholar
  46. 46.
    A.-L. Ducluzeau, B. Schoepp-Cothenet, R. van Lis, F. Baymann, M. J. Russell, W. Nitschke, J. Roy. Soc. Interface 2014, 11, 20140196.CrossRefGoogle Scholar
  47. 47.
    W. G. Zumft, P. M. H. Kroneck, Adv. Microb. Physiol. 2007, 52, 108–226.Google Scholar
  48. 48.
    D.E. Canfield, Oxygen: A Four Billion Year History, Princeton University Press, Princeton, USA, 2014. See book review by T.W. Lyons, Nature Chemistry 2014, 6, 655.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martha E. Sosa Torres
    • 1
  • Juan P. Saucedo-Vázquez
    • 1
  • Peter M. H. Kroneck
    • 2
    Email author
  1. 1.Departamento de Química Inorgánica y Nuclear, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad Universitaria, México, D.F.México
  2. 2.Fachbereich BiologieUniversität KonstanzKonstanzGermany

Personalised recommendations