Advertisement

Deciding the Bell Number for Hereditary Graph Properties

(Extended Abstract)
  • Aistis Atminas
  • Andrew Collins
  • Jan Foniok
  • Vadim V. Lozin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8747)

Abstract

The paper [J. Balogh, B. Bollobás, D. Weinreich, A jump to the Bell number for hereditary graph properties, J. Combin. Theory Ser. B 95 (2005) 29–48] identifies a jump in the speed of hereditary graph properties to the Bell number \(B_n\) and provides a partial characterisation of the family of minimal classes whose speed is at least \(B_n\). In the present paper, we give a complete characterisation of this family. Since this family is infinite, the decidability of the problem of determining if the speed of a hereditary property is above or below the Bell number is questionable. We answer this question positively for properties defined by finitely many forbidden induced subgraphs. In other words, we show that there exists an algorithm which, given a finite set \(\mathcal {F}\) of graphs, decides whether the speed of the class of graphs containing no induced subgraphs from the set \(\mathcal {F}\) is above or below the Bell number.

Keywords

Hereditary class of graphs Speed of hereditary properties Bell number Decidability 

References

  1. 1.
    Alekseev, V.E.: Range of values of entropy of hereditary classes of graphs. Diskret. Mat. 4(2), 148–157 (1992). (in Russian); translation in Discrete Math. Appl. 3(2), 191–199 (1993)Google Scholar
  2. 2.
    Alekseev, V.E.: On lower layers of a lattice of hereditary classes of graphs. Diskretn. Anal. Issled. Oper. Ser. 1 4(1), 3–12 (1997). (in Russian)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Allen, P., Lozin, V., Rao, M.: Clique-width and the speed of hereditary properties. Electron. J. Combin. 16(1), Research Paper 35, 11 p. (2009)Google Scholar
  4. 4.
    Alon, N., Balogh, J., Bollobás, B., Morris, R.: The structure of almost all graphs in a hereditary property. J. Combin. Theory Ser. B 101(2), 85–110 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Balogh, J., Bollobás, B., Weinreich, D.: The speed of hereditary properties of graphs. J. Combin. Theory Ser. B 79(2), 131–156 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Balogh, J., Bollobás, B., Weinreich, D.: The penultimate rate of growth for graph properties. Eur. J. Combin. 22(3), 277–289 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Balogh, J., Bollobás, B., Weinreich, D.: A jump to the Bell number for hereditary graph properties. J. Combin. Theory Ser. B 95(1), 29–48 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chvátal, V., Hammer, P.L.: Set-packing and threshold graphs. Res. Report CORR 73–21, Comp. Sci. Dept. Univ. of Waterloo (1973)Google Scholar
  9. 9.
    Erdős, P., Frankl, P., Rödl, V.: The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent. Graphs Combin. 2(2), 113–121 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Erdős, P., Kleitman, D.J., Rothschild, B.L.: Asymptotic enumeration of \(K_n\)-free graphs. Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, number 17 in Atti dei Convegni Lincei, pp. 19–27. Accad. Naz. Lincei, Rome (1976)Google Scholar
  11. 11.
    Kolaitis, P.G., Prömel, H.J., Rothschild, B.L.: \(K_{l+1}\)-free graphs: asymptotic structure and a 0–1 law. Trans. Amer. Math. Soc. 303(2), 637–671 (1987)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Korpelainen, N., Lozin, V.: Two forbidden induced subgraphs and well-quasi-ordering. Discrete Math. 311(16), 1813–1822 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Prömel, H.J., Steger, A.: Excluding induced subgraphs: quadrilaterals. Random Struct. Algorithms 2(1), 55–71 (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Prömel, H.J., Steger, A.: Excluding induced subgraphs. III. A general asymptotic. Random Struct. Algorithms 3(1), 19–31 (1992)CrossRefzbMATHGoogle Scholar
  15. 15.
    Prömel, H.J., Steger, A.: Excluding induced subgraphs. II. Extremal graphs. Discrete Appl. Math. 44(1–3), 283–294 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Scheinerman, E.R., Zito, J.S.: On the size of hereditary classes of graphs. J. Combin. Theory Ser. B 61(1), 16–39 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J. Algebraic Discrete Methods 3(3), 351–358 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aistis Atminas
    • 1
  • Andrew Collins
    • 1
  • Jan Foniok
    • 1
  • Vadim V. Lozin
    • 1
  1. 1.DIMAP and Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations