Advertisement

DMVP: Foremost Waypoint Coverage of Time-Varying Graphs

  • Eric Aaron
  • Danny Krizanc
  • Elliot Meyerson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8747)

Abstract

We consider the Dynamic Map Visitation Problem (DMVP), in which a team of agents must visit a collection of critical locations as quickly as possible, in an environment that may change rapidly and unpredictably during the agents’ navigation. We apply recent formulations of time-varying graphs (TVGs) to DMVP, shedding new light on the computational hierarchy \(\mathcal {R} \supset \mathcal {B} \supset \mathcal {P}\) of TVG classes by analyzing them in the context of graph navigation. We provide hardness results for all three classes, and for several restricted topologies, we show a separation between the classes by showing severe inapproximability in \(\mathcal {R}\), limited approximability in \(\mathcal {B}\), and tractability in \(\mathcal {P}\). We also give topologies in which DMVP in \(\mathcal {R}\) is fixed parameter tractable, which may serve as a first step toward fully characterizing the features that make DMVP difficult.

Keywords

Mobile Robot Static Graph Hamiltonian Path Maximal Class Parameter Tractable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aaron, E., Kranakis, E., Krizanc, D.: On the complexity of the multi-robot, multi-depot map visitation problem. In: IEEE MASS, pp. 795–800 (2011)Google Scholar
  2. 2.
    Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-varying graphs (2014). http://arxiv.org/abs/1407.7279
  3. 3.
    Ahr, D., Reinhelt, G.: A tabu search algorithm for the min-max k-Chinese postman problem. Comput. Oper. Res. 33(12), 3403–3422 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle problem for bipartite graphs. J. Inf. Process. 3(2), 73–76 (1980)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. Distrib. Comput. 24(1), 31–44 (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bellman, R.: Dynamic programming treatment of the travelling salesman problem. JACM 9(1), 61–63 (1962)CrossRefzbMATHGoogle Scholar
  7. 7.
    Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of 26th STOC, pp. 163–171 (1994)Google Scholar
  8. 8.
    Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations in time-varying graphs: broadcasting under unstructured mobility. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 111–124. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPED 27(5), 387–408 (2012)Google Scholar
  10. 10.
    Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Choset, H.: Coverage for robotics: a survey of recent results. Ann. Math. AI 31, 113–126 (2001)Google Scholar
  12. 12.
    Correll, N., Rutishauser, S., Martinoli, A.: Comparing coordination schemes for miniature robotic swarms. In: Springer Tracts in Advanced Robotics, vol. 39, pp. 471–480 (2008)Google Scholar
  13. 13.
    Easton, K., Burdick, J.: A coverage algorithm for multi-robot boundary inspection. In: Proceedings of ICRA, pp. 727–734 (2005)Google Scholar
  14. 14.
    Edmonds, J., Johnson, E.: Matching, Euler tours and the Chinese postman problem. Math. Program. 5, 88–124 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairman problem. In: Proceedings of 39th STOC (2007)Google Scholar
  16. 16.
    Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  18. 18.
    Hopcroft, J., Karp, R.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 13–23. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)CrossRefGoogle Scholar
  22. 22.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: ACM Symposium on Theory of Computing (2010)Google Scholar
  23. 23.
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT News 42(1), 82–96 (2011)CrossRefGoogle Scholar
  24. 24.
    Mans, B., Mathieson, L.: On the treewidth of dynamic graphs. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 349–360. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 553–564. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  26. 26.
    Wagner, A., Lindenbaum, M., Bruckstein, A.: Distributed covering by ant-robots using evaporating traces. IEEE Trans. Robot. Autom. 15(5), 918–933 (1999)CrossRefGoogle Scholar
  27. 27.
    Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. IJ Found. Comput. Sci. 14(02), 267–285 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Computer Science DepartmentVassar CollegePoughkeepsieUSA
  2. 2.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA

Personalised recommendations