DMVP: Foremost Waypoint Coverage of Time-Varying Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8747)

Abstract

We consider the Dynamic Map Visitation Problem (DMVP), in which a team of agents must visit a collection of critical locations as quickly as possible, in an environment that may change rapidly and unpredictably during the agents’ navigation. We apply recent formulations of time-varying graphs (TVGs) to DMVP, shedding new light on the computational hierarchy \(\mathcal {R} \supset \mathcal {B} \supset \mathcal {P}\) of TVG classes by analyzing them in the context of graph navigation. We provide hardness results for all three classes, and for several restricted topologies, we show a separation between the classes by showing severe inapproximability in \(\mathcal {R}\), limited approximability in \(\mathcal {B}\), and tractability in \(\mathcal {P}\). We also give topologies in which DMVP in \(\mathcal {R}\) is fixed parameter tractable, which may serve as a first step toward fully characterizing the features that make DMVP difficult.

References

  1. 1.
    Aaron, E., Kranakis, E., Krizanc, D.: On the complexity of the multi-robot, multi-depot map visitation problem. In: IEEE MASS, pp. 795–800 (2011)Google Scholar
  2. 2.
    Aaron, E., Krizanc, D., Meyerson, E.: DMVP: foremost waypoint coverage of time-varying graphs (2014). http://arxiv.org/abs/1407.7279
  3. 3.
    Ahr, D., Reinhelt, G.: A tabu search algorithm for the min-max k-Chinese postman problem. Comput. Oper. Res. 33(12), 3403–3422 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle problem for bipartite graphs. J. Inf. Process. 3(2), 73–76 (1980)MathSciNetMATHGoogle Scholar
  5. 5.
    Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. Distrib. Comput. 24(1), 31–44 (2011)CrossRefMATHGoogle Scholar
  6. 6.
    Bellman, R.: Dynamic programming treatment of the travelling salesman problem. JACM 9(1), 61–63 (1962)CrossRefMATHGoogle Scholar
  7. 7.
    Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of 26th STOC, pp. 163–171 (1994)Google Scholar
  8. 8.
    Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations in time-varying graphs: broadcasting under unstructured mobility. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 111–124. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. IJPED 27(5), 387–408 (2012)Google Scholar
  10. 10.
    Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time of a simple random walk on evolving graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Choset, H.: Coverage for robotics: a survey of recent results. Ann. Math. AI 31, 113–126 (2001)Google Scholar
  12. 12.
    Correll, N., Rutishauser, S., Martinoli, A.: Comparing coordination schemes for miniature robotic swarms. In: Springer Tracts in Advanced Robotics, vol. 39, pp. 471–480 (2008)Google Scholar
  13. 13.
    Easton, K., Burdick, J.: A coverage algorithm for multi-robot boundary inspection. In: Proceedings of ICRA, pp. 727–734 (2005)Google Scholar
  14. 14.
    Edmonds, J., Johnson, E.: Matching, Euler tours and the Chinese postman problem. Math. Program. 5, 88–124 (1973)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairman problem. In: Proceedings of 39th STOC (2007)Google Scholar
  16. 16.
    Flocchini, P., Mans, B., Santoro, N.: On the exploration of time-varying networks. Theor. Comput. Sci. 469, 53–68 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)MATHGoogle Scholar
  18. 18.
    Hopcroft, J., Karp, R.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ilcinkas, D., Wade, A.M.: On the power of waiting when exploring public transportation systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 451–464. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Ilcinkas, D., Wade, A.M.: Exploration of the T-interval-connected dynamic graphs: the case of the ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179, pp. 13–23. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)CrossRefGoogle Scholar
  22. 22.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: ACM Symposium on Theory of Computing (2010)Google Scholar
  23. 23.
    Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT News 42(1), 82–96 (2011)CrossRefGoogle Scholar
  24. 24.
    Mans, B., Mathieson, L.: On the treewidth of dynamic graphs. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 349–360. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  25. 25.
    Michail, O., Spirakis, P.G.: Traveling salesman problems in temporal graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 553–564. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  26. 26.
    Wagner, A., Lindenbaum, M., Bruckstein, A.: Distributed covering by ant-robots using evaporating traces. IEEE Trans. Robot. Autom. 15(5), 918–933 (1999)CrossRefGoogle Scholar
  27. 27.
    Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. IJ Found. Comput. Sci. 14(02), 267–285 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Computer Science DepartmentVassar CollegePoughkeepsieUSA
  2. 2.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA

Personalised recommendations