The Parameterized Complexity of the Rainbow Subgraph Problem

  • Falk Hüffner
  • Christian Komusiewicz
  • Rolf Niedermeier
  • Martin Rötzschke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8747)

Abstract

The NP-hard Rainbow Subgraph problem, motivated from bioinformatics, is to find in an edge-colored graph a subgraph that contains each edge color exactly once and has at most \(k\) vertices. We examine the parameterized complexity of Rainbow Subgraph for paths, trees, and general graphs. We show, for example, APX-hardness even if the input graph is a properly edge-colored path in which every color occurs at most twice. Moreover, we show that Rainbow Subgraph is W[1]-hard with respect to the parameter \(k\) and also with respect to the dual parameter \(\ell :=n-k\) where \(n\) is the number of vertices. Hence, we examine parameter combinations and show, for example, a polynomial-size problem kernel for the combined parameter \(\ell \) and “maximum number of colors incident with any vertex”.

References

  1. 1.
    Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237(1–2), 123–134 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Proceedings of 39th STOC, pp. 67–74. ACM (2007)Google Scholar
  3. 3.
    Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cygan, M., Kowalik, Ł., Wykurz, M.: Exponential-time approximation of weighted set cover. Inf. Process. Lett. 109(16), 957–961 (2009)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fernandes, R., Skiena, S.: Microarray synthesis through multiple-use PCR primer design. Bioinformatics 18(suppl 1), 128–135 (2002)CrossRefGoogle Scholar
  6. 6.
    Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hajiaghayi, M.T., Jain, K., Lau, L.C., Măndoiu, I.I., Russell, A., Vazirani, V.V.: Minimum multicolored subgraph problem in multiplex PCR primer set selection and population haplotyping. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 758–766. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Katrenič, J., Schiermeyer, I.: Improved approximation bounds for the minimum rainbow subgraph problem. Inf. Process. Lett. 111(3), 110–114 (2011)CrossRefMATHGoogle Scholar
  9. 9.
    Koch, M., Camacho, S.M., Schiermeyer, I.: Algorithmic approaches for the minimum rainbow subgraph problem. ENDM 38, 765–770 (2011)Google Scholar
  10. 10.
    Komusiewicz, C., Sorge, M.: Finding dense subgraphs of sparse graphs. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 242–251. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Camacho, S.M., Schiermeyer, I., Tuza, Z.: Approximation algorithms for the minimum rainbow subgraph problem. Discrete Math. 310(20), 2666–2670 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Popa, A.: Better lower and upper bounds for the minimum rainbow subgraph problem. Theor. Comput. Sci. 543, 1–8 (2014)CrossRefMATHGoogle Scholar
  13. 13.
    Schiermeyer, I.: On the minimum rainbow subgraph number of a graph. Ars Mathematica Contemporanea 6(1), 83–88 (2012)MathSciNetGoogle Scholar
  14. 14.
    Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, New York (2011)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Falk Hüffner
    • 1
  • Christian Komusiewicz
    • 1
  • Rolf Niedermeier
    • 1
  • Martin Rötzschke
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany

Personalised recommendations