Results on Constructions of Rotation Symmetric Bent and Semi-bent Functions

  • Claude Carlet
  • Guangpu GaoEmail author
  • Wenfen Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8865)


In this paper, we introduce a class of cubic rotation symmetric (RotS) functions and prove that it can yield bent and semi-bent functions. To the best of our knowledge, this is the second primary construction of an infinite class of nonquadratic RotS bent functions which could be found and the first class of nonquadratic RotS semi-bent functions. We also study a class of idempotents (giving RotS functions through the choice of a normal basis of \(GF(2^n)\) over \(GF(2)\)). We derive a characterization of the bent functions among these idempotents and we relate their precise determination to a problem studied in the framework of APN functions. Incidentally, the proofs of bentness given here are useful for a paper studying a construction of idempotents from RotS functions, entitled “A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions” by the same authors, to appear in the journal JCT series A.


Rotation symmetric Boolean function Bent Semi-bent Maiorana-McFarland class Idempotent Permutation 


  1. 1.
    Canteaut, A., Charpin, P., Kyureghyan, G.: A new class of monomial bent functions. Finite Fields Appl. 14(1), 221–241 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  3. 3.
    Carlet, C.: Partially-bent functions. Des. Codes Cryptogr. 3, 135–145 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Carlet, C., Mesnager, S.: On Dillon’s class \(\cal {H}\) of bent functions Niho bent functions and o-polynomials. J. Combin. Theory Ser. A 118(8), 2392–2410 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Carlet, C., Mesnager, S.: On semi-bent Boolean functions. IEEE Trans. Inform. Theory 58, 3287–3292 (2012)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Carlet, C., Gao, G., Liu, W.: A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions. J. Combin. Theory Ser. A 127, 161–175 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Charpin, P., Gong, G.: Hyperbent functions, Kloosterman sums and Dickson polynomials. IEEE Trans. Inform. Theory 54(9), 4230–4238 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Charpin, P., Kyureghyan, G.: On cubic monomial bent functions in the class \(\cal {M}\). SIAM J. Discrete Math. 22(2), 650–665 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Charpin, P., Pasalic, E., Tavernier, C.: On bent and semi-bent quadratic Boolean functions. IEEE Trans. Inf. Theory 51, 4286–4298 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Dalai, D.K., Maitra, S., Sarkar, S.: Results on rotation symmetric bent functions. Discrete Math. 309, 2398–2409 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dillon, J.: Elementary Hadamard difference sets. Ph.D. Dissertation, University of Maryland (1974)Google Scholar
  12. 12.
    Filiol, É., Fontaine, C.: Highly nonlinear balanced boolean functions with a good correlation-immunity. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 475–488. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Fontaine, C.: On some cosets of the first-order Reed-Muller code with high minimum weight. IEEE Trans. Inform. Theory 45, 1237–1243 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Fu, S., Qu, L., Li, C., Sun, B.: Blanced \(2p\)-variable rotation symmetric Boolean functions with maximum algebraic immunity. Appl. Math. Lett. 24, 2093–2096 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gao, G., Zhang, X., Liu, W., Carlet, C.: Constructions of quadratic and cubic rotation symmetric bent functions. IEEE Trans. Inform. Theory 58, 4908–4913 (2012)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Gao, G., Cusick, T.W., Liu, W.: Families of rotation symmetric functions with useful cryptographic properties, to appear in IET Information SecurityGoogle Scholar
  17. 17.
    Kavut, S., Maitra, S., Yücel, M.D.: Search for Boolean functions with excellent profiles in the rotation symmetric class. IEEE Trans. Inform. Theory 53, 1743–1751 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Khoo, K., Gong, G., Stinson, D.: A new characterization of semi-bent and bent functions on finite fields. Des. Codes Cryptogr. 38, 279–295 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Li, Y., Wang, M.: On EA-equivalence of certain permutations to power mappings. Des. Codes Cryptogr. 58, 259–269 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    MacWilliams, F.J., Sloane, J.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977)zbMATHGoogle Scholar
  21. 21.
    McFarland, R.L.: A family of noncyclic difference sets. J. Combin. Theory Ser. A 15, 1–10 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Meier, W., Staffelbach, O.: Fast correlation attacks on stream ciphers. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 301–314. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  23. 23.
    Mesnager, S.: Semi-bent functions from Dillon and Niho exponents, Kloosterman sums, and Dickson polynomials. IEEE Trans. Inform. Theory 57, 7443–7458 (2011)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Pieprzyk, J., Qu, C.: Fast Hashing and rotation symmetric functions. J. Univers. Comput. Sci. 5, 20–31 (1999)MathSciNetGoogle Scholar
  25. 25.
    Rijmen, V., Barreto, P., Gazzoni, D.: Filho, Rotation symmetry in algebraically generated cryptographic substitution tables. Inf. Process. Lett. 106, 246–250 (2008)CrossRefzbMATHGoogle Scholar
  26. 26.
    Rothaus, O.S.: On bent functions. J. Combin. Theory Ser. A 20, 300–305 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Stǎnicǎ, P., Maitra, S.: Rotation symmetric Boolean functions-count and cryptographic properties. Discrete Appl. Math. 156, 1567–1580 (2008)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Stănică, P., Maitra, S., Clark, J.A.: Results on rotation symmetric bent and correlation immune boolean functions. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 161–177. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Zheng, Y., Zhang, X.-M.: Plateaued functions. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 284–300. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.LAGA (UMR 7539)University of Paris 8 and University of Paris 13, CNRSSaint-Denis, CedexFrance
  2. 2.State Key Laboratory of Mathematical Engineering and Advanced ComputingZhengzhouChina
  3. 3.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations